首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
激光-MIG复合焊接技术是目前焊接领域研究的热点,它能提高焊接速度、减小焊接变形和优化接头组织等特点。针对10 mm厚的5052铝合金采用激光-MIG复合焊接技术进行焊接,利用光学显微镜、扫描电镜和维氏硬度计等工具对焊接接头组织、元素分布和力学性能等进行研究,结果表明:采用复合焊接方法可以实现高速焊接中厚度铝合金,焊缝成形美观、界面熔合良好,焊接接头软化区较小,焊接接头强度达到母材强度的94.4%。  相似文献   

2.
分别采用激光-MIG复合焊和MIG焊对3 mm厚的6A01-T5铝合金型材进行焊接,使用体式显微镜、金相显微镜、维氏硬度计、电子万能试验机等研究两种焊接接头的宏观金相、显微组织、硬度分布、拉伸性能和弯曲性能,并用高频疲劳试验机对比分析两种焊接接头平滑件的疲劳性能。结果表明:激光-MIG复合焊和MIG焊接头成形良好;激光-MIG复合焊抗拉强度高于MIG焊,激光-MIG复合焊接头中的焊缝区硬度最低,MIG焊的在离熔合线5 mm的母材"过时效"软化区;激光-MIG复合焊疲劳强度高于MIG焊,焊缝第二相尺寸较小且弥散;激光-MIG复合焊接头综合性能优于MIG焊。  相似文献   

3.
用激光-MIG复合焊接7B52叠层铝合金板材,对接头显微组织、硬度、拉伸力学性能等进行分析.结果表明:复合焊接头由于激光和电弧热源特性不同,导致接头电弧区与激光区组织、性能存在显著差异;电弧区与激光区焊缝内部组织为等轴晶,激光区平均晶粒尺寸为7.4μm,明显小于电弧区平均晶粒尺寸13.6μm;电弧区平均硬度为85HV,低于激光区平均硬度108HV,复合焊的热影响区宽度小于单一MIG焊接;复合焊接头的平均抗拉强度为356 MPa,断裂机制为韧脆复合型断裂.  相似文献   

4.
高强海工钢具有强度高、质量轻等优点,在海洋工程、船舶制造等领域被广泛应用,然而高强海工钢焊接性较差、服役环境恶劣,传统的熔化焊方法很难实现高质量焊接。激光-MIG复合焊作为一种新型、高效、优质、节能的焊接方法,焊接高强海工钢具有独特优势。本文介绍了激光-MIG复合焊相较于其他焊接技术的优点,综述了激光-MIG复合焊过程中焊接参数对高强海工钢焊接接头显微组织和力学性能的影响,对高强海工钢激光-MIG复合焊的发展做了预测。  相似文献   

5.
通过激光-MIG复合热源焊接参数优化,获得15 mm厚钛合金对接焊接接头,利用金相分析、拉伸试验和显微硬度对焊接接头的显微组织和力学性能进行研究。结果表明:坡口角度60°,钝边5 mm焊接过程最稳定,打底层焊缝熔深和熔宽随激光功率和焊接电流的增加而增加,随焊接速度的增加而减小;采用摆动焊接进行填充和盖面,焊接过程熔滴过渡稳定,无焊接缺陷,焊缝由单一的α'马氏体组成,热影响区显微组织为初生α相和α'马氏体;接头抗拉强度高于母材,断后伸长率为11.5%,略低于母材,拉伸试样断裂在母材处。焊缝区显微硬度最高,热影响区居中,母材最低。  相似文献   

6.
为研究焊缝低匹配度对铝合金焊接接头强度的影响规律,分别对ER5356与ER5087焊丝熔敷金属和A7N01铝合金焊接接头进行拉伸试验,并对具有不同低强焊缝的焊接接头进行疲劳强度试验。结果表明:无论是采用ER5356焊丝还是ER5087焊丝,A7N01铝合金的焊接接头均呈低匹配形式;与ER5356焊丝相比,使用ER5087焊丝焊接的铝合金接头焊缝金属的低匹配程度降低,并且随着焊缝强度低配度的降低,焊接接头的静强度和疲劳强度均相应提高。可见,焊缝低配度是影响铝合金焊接接头强度的一个重要因素。  相似文献   

7.
通过焊接工艺试验,研究10、27mm厚AZ31镁合金在CO2激光-MIG电弧复合热源焊接过程中焊接参数对焊缝形貌的影响。结果表明,在复合热源焊接中,焊缝熔深随焊接电流和激光功率的增大而增大,随焊接速度的增大而减小。当焊接电流为120~150A,激光焊接功率为2500~3500W,焊接速度为500~1000mm/min,热源间距为1~2mm,离焦量为0~1mm时得到较好的焊缝形貌。  相似文献   

8.
用添加含Sc铝合金焊丝TIG/MIG焊接工艺对18 mm厚7B52铝合金对接接头进行焊接,对接头成形质量、接头拉伸性能、显微硬度、显微组织及断口形貌进行分析.结果表明:添加新型含Sc焊丝TIG/MIG焊接7B52铝合金焊接性能良好,TIG焊接头最高抗拉强度为423 MPa,平均抗拉强度为412.7 MPa,MIG焊接头最高抗拉强度为420 MPa,平均抗拉强度为410 MPa,焊接接头性能远高于添加ER5356焊丝.这是由于焊丝成分中Sc、Zr、Ti在焊缝中形成的Al3Sc/Al3Zr/Al3Ti多元复合相作为焊缝金属的异质形核质点,起强烈细化晶粒的作用,在细晶强化、固溶强化和沉淀析出强化共同作用下,大幅度提升7B52铝合金焊接接头性能.  相似文献   

9.
以10 mm厚的5052铝合金为研究对象,研究CO2激光-MIG复合焊接工艺参数对其焊缝成形的影响规律。结果表明:焊缝熔深及熔宽随电弧电流的增加先增加后减少而后再增加,随激光功率的增加逐渐增加,随焊接速度的增加迅速下降;热源间距对焊缝熔深影响较大,对焊缝外观形貌影响很小。在He气中加入Ar气对改善焊缝表面成形和咬边等有明显的效果,随着加入的Ar气量增大,效果越明显;加入少量的Ar气有利于提高焊缝熔深,过量反而降低焊缝熔深。激光功率低于1 500 W有轻微咬边,在2 500 W有激光"匙孔"现象出现;当焊接电流为130~145 A、激光功率为3.5~4.5 kW、焊接速度为1~2 m/min、离焦量为-1~0 mm、热源间距为2~3 mm、Ar气流量为5~15 L/min、He气流量为10~20 L/min时,得到较好的焊缝形貌及焊缝熔深。  相似文献   

10.
30CrMnSi钢激光焊接工艺研究   总被引:2,自引:2,他引:0  
石岩  刘佳  张宏  刘双宇 《兵工学报》2010,31(7):991-997
为减小薄板30CrMnSi钢的焊接变形,提高焊接效率,采用CO2激光对其进行了激光焊接工艺研究。采用激光显微镜、扫描电镜仪对微观组织进行了表征,采用显微硬度计、材料试验机等仪器对性能进行了测试。研究发现,激光焊接后的焊接接头分为焊缝区、热影响区、母材以及焊缝与热影响交界区和热影响与母材交界区5个部分。焊缝与热影响交界区显微硬度最高,母材显微硬度最低。焊接速度越快,焊缝的显微硬度越高,焊缝越窄。焊接速度越快焊接变形越小,激光功率4 kW、焊接速度8 m/min条件下,100 mm长度范围内的变形0.1 mm.激光焊接接头的抗拉强度高于母材110~170 MPa,母材为韧性断裂,断口呈典型的韧窝形态,热影响区发生脆性断裂,断口呈准解理断裂,随着焊接功率和速度的提高,热影响区的拉伸强度有降低的趋势。  相似文献   

11.
镁合金激光-MIG复合焊温度场数值模拟   总被引:1,自引:1,他引:0  
采用MSC.Marc有限元软件对镁合金激光-MIG复合焊的温度场进行数值模拟计算,并与实验结果对比,研究表明:数值计算获得的焊缝截面形状和尺寸与实验结果相比,一致性达到94%以上;母材上3点的计算温度与实测值偏差在8%以内;由于上表面温度向下表面传导,使下表面焊缝从凝固温度冷却到300℃比上表面焊缝所需时间长约50%。  相似文献   

12.
利用ANSYS软件采用三维锥体热源模型对T-250钢薄壁圆筒环缝电子束焊接进行数值模拟。结果表明,三维锥体热源模型适合于电子束焊接的数值模拟,由此得出的温度场分布与实际焊接情况吻合良好。残余应力在距焊缝中心轴向4 mm区域内会发生突变或者达到最大值。这个区域正好对应实际焊接的焊缝区和热影响区,说明数值模拟与实际焊接有较好的对应性。  相似文献   

13.
崔博  张宏  刘双宇  刘凤德 《兵工学报》2019,40(11):2311-2318
为解决高氮钢熔焊过程中出现的气孔和氮损失问题,采用激光-电弧复合焊接技术对高氮钢进行焊接试验。研究了保护气体成分、焊丝成分和超声振动对焊接接头气孔率和氮含量的影响。结果表明:当保护气体为Ar+N2时,随着保护气体中N2比例的增大,焊缝氮含量升高,气孔率呈先降低、后升高的趋势;当向Ar+N2中添加2%的O2后,氮含量和气孔率明显升高,且随着N2比例的增大,焊缝氮含量增多,但气孔率呈无规律变化;随着焊丝氮含量的增加,焊缝氮含量呈先升高、后降低趋势,气孔率呈先降低、后升高趋势;随着超声功率的增加,焊缝氮含量略有降低,气孔率呈先降低、后升高趋势;适当的保护气体和焊丝成分可提高焊缝氮含量的同时并能够抑制焊缝气孔形成,超声功率为180 W时抑制气孔效果最好。  相似文献   

14.
为了预测7A52铝合金槽型结构的焊接变形,采用MSC.MARC非线性有限元软件对该结构的MIG焊接过程进行数值模拟计算,并与实际焊接变形数据对比。结果分析表明,数值模拟计算能够预测铝合金槽型结构焊接变形的总体趋势,并且预测结果与实际焊接变形实测数据接近。  相似文献   

15.
通过焊接工艺评定试验以及疲劳试验,分析高强度耐候钢Q355GNHD正常对接接头和3次焊修接头的显微组织、常规力学性能以及疲劳结果差异。结果表明:3次焊修接头熔合良好,显微组织未见马氏体;3次焊修焊接接头和正常焊接接头的拉伸、弯曲及硬度等常规力学性能未见明显差异;3次焊修接头过热区组织粗大,冲击功有所降低,但均满足标准规定的焊接接头技术条件;两种焊接接头的疲劳性能相近,符合设计要求。  相似文献   

16.
7A52铝合金双丝MIG焊接温度场数值模拟   总被引:1,自引:0,他引:1  
采用ANSYS的"生死"单元技术,对7A52铝合金双丝MIG焊接的热过程进行数值模拟。实现多层焊中焊缝填充的动态过程,与真实试验过程完全吻合。结果表明,7A52铝合金双丝MIG焊接过程中,焊点处的峰值温度可达到837℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号