首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of adding mixtures of titania and zirconia on the methanol synthesis activity and selectivity of Cu/SiO2 were investigated. The synthesis of methanol from both CO/H2 and CO2/H2 mixtures was examined at 0.65 MPa and temperatures between 448 and 573 K. For CO hydrogenation, the addition of ZrO2 alone increased the methanol synthesis activity of Cu/SiO2 by up to three-fold. Substitution of a portion of the ZrO2 by TiO2 decreased the methanol synthesis activity of the catalyst relative to that observed when only ZrO2 is added. ZrO2 addition also enhanced the methane synthesis activity by as much as seven fold. In the case of CO2 hydrogenation, the maximum methanol synthesis activity is achieved when a 50/50 wt% mixture of ZrO2 and TiO2 is added to Cu/SiO2. Neither the presence of the oxide additive nor its composition had any effect on the activity of the reverse water–gas-shift reaction, which suggests that this reaction proceeds only on Cu. The observed effects of ZrO2 and TiO2 on the catalytic activity of methanol synthesis from CO and CO2, and methane synthesis from CO, are interpreted in terms of the strength and concentration of acidic and basic groups on the surface of the dispersed oxide.  相似文献   

2.
In situ FT-IR spectroscopy allows the methanol synthesis reaction to be investigated under actual industrial conditions of 503 K and 10 MPa. On Cu/SiO2 catalyst formate species were initially formed which were subsequently hydrogenated to methanol. During the reaction a steady state concentration of formate species persisted on the copper. Additionally, a small quantity of gaseous methane was produced. In contrast, the reaction of CO2 and H2 on ZnO/SiO2 catalyst only resulted in the formation of zinc formate species: no methanol was detected. The interaction of CO2 and H2 with Cu/ZnO/SiO2 catalyst gave formate species on both copper and zinc oxide. Methanol was again formed by the hydrogenation of copper formate species. Steady-state concentrations of copper formate existed under actual industrial reaction conditions, and copper formate is the pivotal intermediate for methanol synthesis. Collation of these results with previous data on copper-based methanol synthesis catalysts allowed the formulation of a reaction mechanism.  相似文献   

3.
The effect of Zn in copper catalysts on the activities for both CO2 and CO hydrogenations has been examined using a physical mixture of Cu/SiO2+ZnO/SiO2 and a Zn-containing Cu/SiO2 catalyst or (Zn)Cu/SiO2. Reduction of the physical mixture with H2 at 573–723 K results in an increase in the yield of methanol produced by the CO2 hydrogenation, while no such a promotion was observed for the CO hydrogenation, indicating that the active site is different for the CO2 and CO hydrogenations. However, the methanol yield by CO hydrogenation is significantly increased by the oxidation treatment of the (Zn)Cu/SiO2 catalyst. Thus it is concluded that the Cu–Zn site is active for the CO2 hydrogenation as previously reported, while the Cu–O–Zn site is active for the CO hydrogenation.  相似文献   

4.
Methanol synthesis from CO/H2 and CO2/H2 was carried out at atmospheric pressure over Cu/ZnO/Al2O3 catalyst. The formation and variation of surface species were recorded by in situ FT-IR spectroscopy. The result revealed that both CO and CO2 can serve as the primary carbon source for methanol synthesis. For CO/H2 feed gas, only HCOO-Zn was detected; however, for CO2/H2, both HCOO-Zn and HCOO-Cu were observed, and without CH3O-Cu. HCOO-Zn was the key intermediate. A scheme of methanol synthesis and reverse water-gas shift (RGWS) reaction was proposed.  相似文献   

5.
《Journal of Catalysis》1999,181(2):271-279
The catalytic activity of Cu(100) and Ni/Cu(100) with respect to the methanol synthesis from various mixtures containing CO2, CO, and H2have been studied in a combined UHV/high pressure cell apparatus at reaction conditions,Ptot=1.5 bar andT=543 K. For the clean Cu(100) surface it is found that admission of CO to a reaction mixture containing CO2and H2does not lead to an increase in the rate of methanol formation, which indirectly suggests that the role of CO in the industrial methanol process relates to the change in reduction potential of the synthesis gas. For the Ni/Cu(100) surface it is found that Ni does not promote the rate of methanol formation from mixtures containing CO2and H2. In opposition, admission of CO to the reaction mixture leads to a significant increase in the rate of methanol formation with a turnover frequency/Ni site∼60×the turnover frequency/Cu site at Ni coverages below 0.1 ML making it a rather substantial promoting effect. It is found that the admission of CO to the synthesis gas creates segregation of Ni to the surface, whereas this is not the case for a reaction involving CO2and H2. It is suggested that CO acts strictly as a promotor in the system and we ascribe the increase in activity to a promotion through gas phase induced surface segregation of Ni.  相似文献   

6.
The mechanism of the reverse water–gas shift reaction over a Cu catalyst was studied by CO2 hydrogenation, temperature-programmed reduction of the Cu catalyst and pulse reaction with QMS monitoring. In comparison with the reaction of CO2 alone, hydrogen can significantly promote the CO formation in the RWGS reaction. The formate derived from association of H2 and CO2 is proposed to be the key intermediate for CO production. Formate dissociation mechanism is the major reaction route for CO production. Cu(I) species were formed from the oxidation of Cu0 associated with CO2 dissociation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Methanol cannot be produced from CO + H2 on a clean copper surface, but a promotional effect of potassium on methanol synthesis from mixtures of CO + H2 and CO + CO2 + H2 at a total pressure of 1.5 bar on a Cu(100) surface is shown in this work. The experiments are performed in a UHV chamber connected with a high-pressure cell (HPC). The methanol produced is measured with a gas chromatograph and the surface is characterized with surface science techniques. The results show that potassium is a promoter for the methanol synthesis from CO + H2, and that the influence of CO2 is negligible. Investigation of the post-reaction surface with TPD indicates that potassium carbonate is present and plays an important role. The activation energy is determined as 42 ± 3 kJ/mol for methanol synthesis on K/Cu(100) from CO + H2.  相似文献   

8.
The rates of CO and CO/CO2 hydrogenation at 4.2 MPa and 523 K are reported for a series of Cu/SiO2 catalysts containing 2 to 88 wt.% Cu. These catalysts were prepared on a variety of silica sources using several different Cu deposition techniques. In CO/CO2 hydrogenation, the rate of methanol formation is proportional to the exposed Cu surface area of the reduced catalyst precursor, as determined by N2O frontal chromatography. The observed rate, 4.2×10–3 mole CH3OH/Cu site-sec, is within a factor of three of the rates reported by others over Cu/ZnO and Cu/ZnO/Al2O3 catalysts under comparable conditions. These results suggest that the ZnO component is only a moderate promoter in methanol synthesis. Hydrogenation of CO over these catalysts also gives methanol with high selectivity, but the synthesis rate is not proportional to the Cu surface area. This implies that another type of site, either alone or in cooperation with Cu, is involved in the synthesis of methanol from CO.  相似文献   

9.
Bimetallic FeIr/SiO2 catalysts that are active for methanol production from synthesis gas (CO+H2) bind CO less strongly, and exhibit higher activity for the hydrogenation of ethylene in the presence of CO, than catalysts that produce mainly methane. It is argued that promotion of the noble metal serves to weaken the adsorption of CO, thereby lowering its tendency to dissociate, and, most importantly, enhancing the surface coverage of hydrogen. Both factors are favorable for methanol formation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The space velocity had profound and complicated effects on methanol synthesis from CO2/CO/H2 over Cu/ZnO/Al2O3 at 523 K and 3.0MPa. At high space velocities, methanol yields as well as the rate of methanol production increased continuously with increasing CO2 concentration in the feed. Below a certain space velocity, methanol yields and reaction rates showed a maximum at CO2 concentration of 5–10%. Different coverages of surface reaction intermediates on copper appeared to be responsible for this phenomenon. The space velocity that gave the maximal rate of methanol production also depended on the feed composition. Higher space velocity yielded higher rates for CO2/ H2 and the opposite effect was observed for the CO/H2 feed. For CO2/CO/H2 feed, an optimal space velocity existed for obtaining the maximal rate.  相似文献   

11.
12.

The synthesis and characterization of an inexpensive porous MoxCy/SiO2 material is presented, which was obtained by mixing ammonium hexamolybdate, sucrose, and a mesoporous silica (SBA-15), with a subsequent heat treatment under inert atmosphere. This porous material presented a specific surface area of 170 m2/g. The catalytic behavior in CO2 hydrogenation was compared with that of Mo2C and α-MoC1?x obtained from ammonium hexamolybdate and sucrose, using different Mo/C ratios. CO2 hydrogenation tests were performed at moderate (100 kPa) and high pressures (2.0 MPa), and it was found that only CO, H2O and CH4 are formed at moderate pressures by the three materials, while at higher pressures, methanol and hydrocarbons (C2H6, C3H8) are also obtained. Differences in selectivity were observed at the high pressure tests. Mo2C presented higher selectivity to CO and methanol compared with MoC1?x, which showed preferential selectivity to hydrocarbons (CH4, C2H6). The porous MoxCy/SiO2 material showed the highest CO2 hydrogenation activity at high temperatures (270 and 300 °C), being a promising material for the conversion of CO2 to CO and CH4.

  相似文献   

13.
A new synthesis method of low-temperature methanol proceeded on Cu/ZnO/Al2O3 catalysts from CO/CO2/H2 using 2-butanol as promoters. The Cu/ZnO/Al2O3 catalysts were prepared by co-impregnation of r-Al2O3 with an aqueous solution of copper nitrate and zinc nitrate. The total carbon turnover frequency (TOF), the yield and selectivity of methanol were the highest by using the Cu/ZnO/Al2O3 catalyst with copper loading of 5% and the Zn/Cu molar ratio of 1/1, which precursor were not calcined, and reduced at 493 K. The activity of the catalysts increased due to the presence of the CuO/ZnO phase in the oxidized form of impregnation Cu/ZnO/Al2O3 catalysts. The active sites of the Cu/ZnO/Al2O3 catalyst for methanol synthesis are not only metallic Cu but also special sites such as the Cu–Zn site, i.e. metallic Cu and the Cu–Zn site work cooperatively to catalyze the methanol synthesis reaction.  相似文献   

14.
A study has been conducted to identify the influence of zirconia phase and copper to zirconia surface area on the activity of Cu/ZrO2 catalysts for the synthesis of methanol from either CO/H2 or CO2/H2. To determine the effects of zirconia phase, a pair of Cu/ZrO2 catalysts was prepared on tetragonal (t-) and monoclinic (m-) zirconia. The zirconia surface area and the Cu dispersion were essentially identical for these two catalysts. At 548 K, 0.65 MPa, and H2/COx= 3 (x = 1, 2), the catalyst prepared on m-ZrO2 was 4.5 times more active for methanol synthesis from CO2/H2 than that prepared on t-ZrO2, and 7.5 times more active when CO/H2 was used as the feed. Increasing the surface area of m-ZrO2 and the ratio of Cu to ZrO2 surface areas further increased the methanol synthesis activity. In situ infrared spectroscopy and transient-response experiments indicate that the higher rate of methanol synthesis from CO2/H2 over Cu/m-ZrO2 is due solely to the higher concentration of active intermediates. By contrast, the higher rate of methanol synthesis from CO/H2 is due to both a higher concentration of surface intermediates and the more rapid dynamics of their transformation over Cu/ZrO2.  相似文献   

15.
The activity of a binary catalyst in alcoholic solvents for methanol synthesis from CO/H2/CO2 at low temperature was investigated in a concurrent synthesis course. Experiment results showed that the combination of homogeneous potassium formate catalyst and solid copper–magnesia catalyst enhanced the conversion of CO2-containing syngas to methanol at temperature of 423–443 K and pressure of 3–5 MPa. Under a contact time of 100 g h/mol, the maximum conversion of total carbon approached the reaction equilibrium and the selectivity of methanol was 99%. A reaction pathway involving esterification and hydrogenolysis of esters was postulated based on the integrative and separate activity tests, along with the structural characterization of the catalysts. Both potassium formate for the esterification as well as Cu/MgO for the hydrogenolysis were found to be crucial to this homogeneous and heterogeneous synergistically catalytic system. CO and H2 were involved in the recycling of potassium formate.  相似文献   

16.
The catalytic promoting effects of eleven different alcohols, as reaction medium, on the synthesis of methanol from feed gas of CO/CO2/H2 on Cu/ZnO solid catalyst were investigated. Added alcohol altered the reaction route to realize a low-temperature synthesis method where formate was an intermediate. Many alcohols showed catalytic promoting effect for methanol formation at temperature as low as 443 K, remarkably lower than that in the present industrial ICI process.  相似文献   

17.
Li  Hou-Xing  Yang  Liu-Qing-Qing  Chi  Zi-Yi  Zhang  Yu-Ling  Li  Xue-Gang  He  Yu-Lian  Reina  Tomas R.  Xiao  Wen-De 《Catalysis Letters》2022,152(10):3110-3124

CO2 hydrogenation to CH3OH via heterogeneous catalysis is one of the most promising and available approaches for mitigation of anthropogenic CO2 issues. In this work, thermodynamic equilibria of CO2 to methanol were compared with experimental results at given conditions using a commercial Cu/ZnO/Al2O3 catalyst for CO hydrogenation to methanol. It was found that, the high pressure, low temperature, and high H2/CO2 ratio are favorable to methanol synthesis from CO2. Furthermore, the kinetic data were measured with an isothermal integral reactor under temperature between 160 and 240 °C, lower than that for CO hydrogenation to methanol reaction. Based on the single-active site and dual-active site LH mechanisms, both kinetic models can achieve full illustration of the influence of the operating conditions and the mechanisms. According to comparative analysis of the error variances of model correlations and the adsorbate coverages on the active sites, the dual-site mechanism identified to be superior to the single-site one for methanol synthesis from CO2 feedstock. Overall, this paper provides fundamental understanding of the thermodynamic and kinetic aspects of a central route for CO2 Valorisation.

Graphical Abstract
  相似文献   

18.
Cu/ZnO/ZrO2 catalysts were prepared by a route of solid-state reaction and tested for the synthesis of methanol from CO2 hydrogenation. The effects of calcination temperature on the physicochemical properties of as-prepared catalysts were investigated by N2 adsorption, XRD, TEM, N2O titration and H2-TPR techniques. The results show that the dispersion of copper species decreases with the increase in calcination temperature. Meanwhile, the phase transformation of zirconia from tetragonal to monoclinic was observed. The highest activity was achieved over the catalyst calcined at 400 °C. This method is a promising alternative for the preparation of highly efficient Cu/ZnO/ZrO2 catalysts.  相似文献   

19.
La, V, Zn, Cu, Fe, Li and Ag promoted Rh/SiO2 catalysts were investigated for the synthesis of ethanol during CO hydrogenation at 230 °C and 1.8 atm. As is well known, the activity and selectivity depend heavily on the choice of promoter. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was used to probe the effects of La, V, Zn and Cu on CO adsorption and hydrogenation. From the IR study, it was found that the behavior of CO adsorbed on the differently promoted catalysts was very different. While La enhanced total CO adsorption, the addition of V, Zn and Cu suppressed CO adsorption to different extents. The doubly promoted Rh-La/V/SiO2 showed only moderate CO adsorption. Results from DRIFTS suggest that the higher catalytic activity (compared to the non-promoted catalyst) observed for the La singly promoted Rh/SiO2 catalyst may primarily be caused by an increase in the concentration of the adsorbed CO species in the presence of H2, possibly due to the formation of new active sites at the LaOx-Rh interface. The higher catalytic activity of the V singly promoted Rh/SiO2 catalyst could be ascribed to an increased desorption rate/reactivity of the adsorbed CO species. The La and V doubly promoted catalyst showed both new adsorbed CO species and increased desorption rate/reactivity of the adsorbed species during CO hydrogenation due to a synergistic promoting effect of La and V. The addition of Zn or Cu promoters significantly reduced the desorption rate/reactivity of the adsorbed CO species on Rh/SiO2, leading apparently to the much reduced activities for CO hydrogenation observed.  相似文献   

20.
The effect of ZnO/SiO2 in a physical mixture of Cu/SiO2 and ZnO/SiO2 on methanol synthesis from CO2 and H2 was studied to clarify the role of ZnO in Cu/ZnO-based catalysts. An active Cu/SiO2 was prepared by the following procedure: the Cu/SiO2 and ZnO/SiO2 catalysts with a different SiO2 particle size were mixed and reduced with H2 at 523-723 K, and the Cu/SiO2 was then separated from the mixture using a sieve. The methanol synthesis activity of the Cu/SiO2 catalyst increased with the reduction temperature and was in fairly good agreement with that previously obtained for the physical mixture of Cu/SiO2 and ZnO/SiO2. These results indicated that the active site for methanol synthesis was created on the Cu/SiO2 upon reduction of the physical mixture with H2. It was also found that ZnO itself had no promotional effect on the methanol synthesis activity except for the role of ZnO to create the active site. The active site created on the Cu/SiO2 catalyst was found not to promote the formation of formate from CO2 and H2 on the Cu surface based on in situ FT-IR measurements. A special formate species unstable at 523 K with an OCO asymmetric peak at ~1585 cm-1 was considered to be adsorbed on the active site. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号