首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, a transparent magnesium aluminate spinel ceramic was fabricated through the newest colloidal gel casting method, using a synthetic powder with the average particle size of 90 nm and Isobutylene-Maleic Anhydride (ISOBAM) additive. ISOBAM served as both a dispersant and a gelation agent to achieve a dense body. Also, the suspension rheological behavior was optimized by the solid loading of 85 wt%, the additive content of 0.7 wt%, and the gelation time of 350 s. This led to a green body with a density equal to 65% of theoretical density and the green strength of 14.48 MPa. The results revealed that the reduction of porosity and the uniform distribution of pores in the green body (smaller than half of the initial powder particle size, 35 nm), as accompanied by spark plasma sintering (SPS), resulted in the final body density of 99.97%, as well as the high in-line transmittance of 86.7% at the wavelength of 1100 nm.  相似文献   

2.
《Ceramics International》2016,42(3):4347-4353
A direct coagulation casting method for silicon nitride suspension via dispersant reaction was reported. Tetramethylammonium hydroxide (TMAOH) was used as dispersant to prepare silicon nitride suspension with high solid loading and low viscosity. Influences of TMAOH and pH value on the dispersion of silicon nitride powder were investigated. Glycerol diacetate (GDA) was used to coagulate the silicon nitride suspension. Influences of the concentration of glycerol diacetate on the viscosity and pH value of the suspension were investigated. It was indicated that high viscosity sufficient to coagulate the suspension was achieved by adding 1.0–2.0 vol% glycerol diacetate at 40–70 °C. The coagulation mechanism was proposed that the silicon nitride suspension was destabilized by dispersant reacting with acetic acid which was hydrolyzed from glycerol diacetate at elevated temperature. Coagulated samples could be demolded without deformation by treating 50 vol% silicon nitride suspensions with 0.2 wt% tetramethylammonium hydroxide and 1.0–2.0 vol% glycerol diacetate at different temperatures. Dense silicon nitride ceramics with relative density above 98.8% had been prepared by this method using glycerol diacetate as coagulating agent sintered by different methods.  相似文献   

3.
《Ceramics International》2015,41(8):9939-9946
In this article, the amount of dispersant agent [i.e., polyethyleneimine (PEI)] and pH was optimized to achieve high colloidal stability in yttria-stabilized tetragonal zirconia polycrystalline (Y-TZP) suspension. Rheological properties of aqueous Y-TZP suspension in the presence of different amounts of PEI were evaluated via viscosity tests to identify the optimal amount of dispersant agent. Zeta potential and particle size measurements were employed to determine the suitable pH that can establish good colloidal stability. Mechanical properties (e.g., density and hardness) and morphological properties were also considered in determining the optimal pH. Rheological tests showed that Y-TZP suspension with 0.4 wt% PEI had the lowest viscosity, which is suitable for colloidal processing. pH 2 and 4 were recorded to have the lowest particle size and highest zeta potential, respectively. Characterization tests and morphological analysis showed that pH 2 had the highest density (92.5%), highest hardness (10.36 GPa), and homogeneous microstructure with fine average grain size (486 nm). Thus, the dispersant amount of 0.4 wt% PEI and pH 2 were selected as the optimal parameters for colloidal processing of aqueous Y-TZP suspension. Y-TZP suspension with excellent colloidal stability and reliable final products was produced under these parameters.  相似文献   

4.
In order to reduce agglomeration and overcome the low packing density issues of working with nano-sized powders, a colloidal processing route has been chosen in this study. Commercial BaTiO3 (BT) powders with a particle size in the range of 50 nm have been dispersed in the aqueous media. Rheological properties have been analyzed on suspensions with different solids loading, dispersant concentration, and pH conditions. Optimum dispersing conditions were obtained for suspensions prepared at basic pH (pH 10) with 0.646 wt% ammonium poly (acrylic acid) (NH4PAA) as a dispersant. Suspensions have been centrifugally cast to obtain the green body, and the sintering conditions have been investigated by examining the phase evolution, microstructures and electrical properties of the sintered samples through XRD, SEM and dielectric measurements, respectively. The results show that for a 45 vol% suspension sintered at 1325 °C, the density of bulk ceramic can reach 5.85 g/cm3, nearly 97.0% of the theoretical density.  相似文献   

5.
The effect of the nanometric-ranged particle size of the starting powder through a simple and well-established shaping method, slip casting, has been studied. Several alumina suspensions with the same viscosity (but different solid content suspensions) and different particle size (11, 44, 190 and 600 nm) were prepared and shaped into a dense body. The green and sintered densities ranged between 30–67% and 63–99% of the theoretical value, respectively. These values, together with the microstructure observations reveal the effect of the solid content of the suspensions and the characteristics of the ceramic powder, leading to the determination of an optimal particle size. Based on both processability (rheological behaviour) and microstructure (density and grain size) it has been determined that particles with sizes ranging 100–300 nm are the best for preparing concentrated suspensions with low viscosity and bodies with density close to the theoretical value when using conventional pressureless sintering densification.  相似文献   

6.
《Ceramics International》2017,43(14):11361-11366
A novel temperature induced gelation method for alumina suspension using oleic acid as dispersant is reported. Non–aqueous suspension with high solid loading and low viscosity is prepared using normal octane as solvent. Influence of oleic acid on the dispersion of suspension was investigated. There was a well disperse alumina suspension with 1.3 wt% oleic acid. Influence of gelation temperature on the coagulation process and properties of green body was investigated. The sufficiently high viscosity to coagulate the suspension was achieved at −20 °C. The gelation temperature was controlled between the melting point of dispersant and solvent. The gelation mechanism is proposed that alumina suspension is destabilized by dispersant separating out from the solvent and removing from the alumina particles surface. The alumina green body with wet compressive strength of 1.07 MPa can be demolded without deformation by treating 53 vol% alumina suspension at −20 °C for 12 h. After being sintered at 1550 °C for 3 h, dense alumina ceramics with relative density of 98.62% and flexural strength of 371±25 MPa have been obtained by this method.  相似文献   

7.
This paper describes the fabrication of Si3N4–SiC nano-composite ceramics through a novel direct casting method (temperature-induced gelation) followed by liquid-phase sintering. A kind of polyester/polyamine condensation copolymer (hypermer KD1) was used as dispersant and gelling agent. At room temperature (≈20 °C), it plays the role of a steric dispersant, allowing the preparation of stable homogeneous and high concentrated suspension (57.5 vol.% solids) consisting of Si3N4, Y2O3, Al2O3 and 20 wt.% nano-SiC. At low temperature it acts as gelling agent, inducing incipient flocculation due to the collapse of adsorbed layer. The low values of viscosity and elastic modulus at room temperature, increased dramatically within a moderate decrease of temperature from 20 to 5 °C. A completely solidified green body with precise dimensions, smooth surface, high strength and homogeneous density has been obtained, which could be gas-pressure sintered to near theoretical density at 1850 °C.  相似文献   

8.
Poly(acrylic acid) (PAA) and poly(acrylic acid-co-maleic acid) (PACM) were used as dispersants in preparation of lead zirconate titanate (PZT) aqueous suspensions. The effects of dispersant structure on particle stabilization were investigated through properties of the suspensions. Viscosity and sedimentation height measurements showed that addition of the dispersants improved particle stabilization. The dispersant concentrations to obtain the lowest viscosity were 0.4 wt% for PAA and 0.2 wt% for PACM based on powder dried weight basis. Furthermore, effects of pH were studied on the suspensions prepared with 0.2 wt% dispersants. Viscosity and sedimentation behaviors indicated the improvements of particle dispersion and suspension stability with an increasing pH. Particle dispersion revealed by laser light scattering and scanning electron microscopy supported an improvement of particle dispersion at alkaline pHs. Detailed analysis of these data indicated that the PACM exhibited higher dispersant efficiency for PZT aqueous suspension in all conditions. The results were discussed based on the concentrations of anionic –COO? groups at various pHs and charge density along polymeric backbone of the dispersants.  相似文献   

9.
This work proposes an effective method for dispersion of zirconia suspension for dental block preparation and optimizes the cold isostatic pressing (CIP) pressure to improve the densification of slip-casted zirconia blocks. Two batches of 44 wt% zirconia suspension were prepared using distilled water in a pH 2 medium containing 0.5 wt% polyethyleneimine as dispersant. The first batch was sonicated for different durations (from 5 min to 30 min), and the second batch was dispersed through ball milling at rotational speeds of 200, 300, and 400 rpm for 60, 90, and 120 min. All suspensions were subjected to sedimentation test and particle size measurement. Results revealed that the optimum ultrasonication duration was 10 min, which yielded the smallest particle size of 133 nm. Ball milling at 300 rpm for 120 min achieved the maximum dispersion of particles, with an average size of 75 nm. Under the optimum conditions of ultrasonication duration, ball milling duration, and ball milling speed, the particle size decreased to 48 nm, which is close to the primary particle size. These dispersion techniques and parameters were selected for preparing a suspension to be consolidated into blocks through slip casting and were enhanced through CIP at pressure ranging from 100 MPa to 300 MPa. CIP compaction at 250 MPa significantly increased the shrinkage percentage of green zirconia blocks, with pore radius decreased to 18 nm. The density of zirconia pressed at 250 MPa and presintered at a low temperature of 950 °C was 59% of the theoretical density and was higher than that of commercial presintered blocks. Thus, CIP should be conducted under a compaction pressure of 250 MPa to produce dense and homogeneous zirconia blocks.  相似文献   

10.
It is demonstrated that a complete elimination of pores on sintering is governed not only by the size of the ceramic powder particles and by the homogeneity of their mutual coordination but similarly strongly by the state of the crystal lattice: with different cation disorder at fixed stoichiometry (n = 1) the sintering temperatures may differ by as much as 200 °C at constant powder particle size and equal homogeneity of the green bodies. Additionally, the impact of stoichiometry was investigated over the range between n = 1 and n = 3 with retarded reactive sintering at moderately increased Al2O3 concentrations but promoted densification of alumina-rich compositions. Taking advantage of the observed effects, sintered spinel ceramics were derived by reactive sintering of undoped MgO/Al2O3 mixtures resulting in an in-line transmittance which equals spinel single crystals of similar composition from 200 nm wave length up to the IR range.  相似文献   

11.
A novel in-situ coagulation method without coagulation agent and adjusting pH value for yttria-stabilized zirconia (YSZ) suspension via dispersant hydrolysis is reported. Sodium tripolyphosphate (STPP) is used as dispersant to prepare electrostatic stabilized YSZ suspension. Influences of STPP contents on the dispersion and pH value of YSZ suspension were investigated. It indicated that there was a well-dispersed YSZ suspension with the addition of 0.3 wt% STPP at pH = 10. Influence of coagulation temperature on coagulation process and properties of green body was investigated. The sufficiently high viscosity suspension to coagulate was achieved at 60–80 °C. The coagulation mechanism was different from traditional direct coagulation casting. The suspension was coagulated by directly shifting the isoelectric point to the original state without increasing the ionic strength and adjusting the pH value. It was proposed that the YSZ suspension could be destabilized via decrease of zeta potential by sodium tripolyphosphate hydrolyzing at elevated temperature. Coagulated samples with wet compressive strength of 3.60 MPa could be demolded without deformation by treating 50 vol% YSZ suspension with 0.3 wt% STPP at 60 °C for 30 min. Dense YSZ ceramics with flexural strength of 887 ± 110 MPa and relative density of 98.9% had been prepared by this method sintered at 1450 °C for 3 h.  相似文献   

12.
The effect of particle and pore arrangement on sintering and densification of ultra-fine (~130 nm) Ce0.9Gd0.1O2?δ powder was evaluated. The common understanding that higher initial density of a ceramic network leads to a higher sintered density is not valid for fine powders, which have extremely good sinterability when there is a favourable particle packing. The effect of the applied stresses during forming (which produce different particle packing arrangements) was investigated by forging green bodies by different shaping techniques, including casting, and cold isostatic pressing. Samples formed with techniques that apply low levels of stress had a particle arrangement which significantly enhanced sintering at low temperature, compared to those prepared by high stress techniques. The sample geometry, heat treatment for organic removal and the initial density of the green body had a negligible effect on the final density when the ratio of the pore size to particle size was around 1.  相似文献   

13.
The electrophoretic deposition (EPD) method was used to shape sub-micron Al2O3 green body in ethanol. The uniformity of the final deposit was affected by the colloidal properties of the suspension. Therefore, the stability of Al2O3 suspension in ethanol was studied in terms of electrophoretic mobility, viscosity and conductivity. The EPD kinetics were further investigated with different electrical conditions. The effect of cellulose acetate membrane on deposit was also studied. The green body with a relative density of about 60 %TD was associated with a narrow pore size distribution, indicating a high homogeneity of particle coordination. After presintering and HIPing at 1250 °C, a fully dense alumina ceramic was obtained with an average grain size of 0.65 μm.  相似文献   

14.
Dense silicon carbide ceramics using chemical treated powder by DCC via dispersant reaction method and liquid phase sintering was reported. Ammonium peroxydisulfate ((NH4)2S2O8) and ammonium carbonate ((NH4)2CO3) were used as acid and base solutions to treat the silicon carbide powder, respectively. Influence of silicon carbide powder with chemical treatment on the preparation of silicon carbide suspension was studied. It was indicated that 50 vol% and 52 vol% silicon carbide suspensions with viscosities of 0.71 Pa s and 0.80 Pa s could be prepared using acid and base treated powders. Influence of silicon carbide powder with chemical treatment on the coagulation process and properties of green bodies and sintered ceramics were studied. It was indicated that silicon carbide green bodies with compressive strength of 1.13 MPa could be prepared using base treated powder. Dense silicon carbide ceramics with relative density above 99.3% and flexural strength of 697 ± 30 MPa had been prepared by DCC via dispersant reaction and liquid phase sintering using Al2O3 and Y2O3 as additives at 1950 °C for 2 h.  相似文献   

15.
The sinterability of compositions from different powder preparation methods (coprecipitation-coating of Si3N4 powder or mechanical mixing of Si3N4 with Y2O3 and Al2O3) and compaction routes (dry pressing or slip casting) was compared. Both the coating method and the slip casting process improved silicon nitride sinterability over the mechanical mixing method and dry pressing route. However, the minimisation of powder agglomeration in the green bodies achieved by slip casting is more determinant to the sintering behaviour than the homogeneous distribution of the sintering additives around the Si3N4 offered by the coated powder. The coating powder method in combination with the slip casting process is the most favourable processing route, leading to a homogeneous and fully dense microstructure by pressureless sintering at a relatively low temperature of 1750°C. This technique produced materials with hardness of 15·2 GPa, fracture toughness of 7 MPa  m1/2 and flexural bending strength of 910 MPa.  相似文献   

16.
《Ceramics International》2016,42(8):9737-9743
In the present work, transparent Y2O3 ceramics were prepared via colloidal processing method from nano-sized Y2O3 powders. The effects of triammonium citrate (TAC) on the colloid stability of aqueous suspensions of nano-sized Y2O3 powders were studied. The surface properties of yttria powders were notably affected by the addition of TAC dispersant. The adsorption of TAC on the particle surface shifts the IEP to lower pH values and increases the absolute zeta potential in alkaline region. Rheological characterization of the investigated system revealed an optimal dispersant concentration of 1 wt%, which correlated well with the saturation adsorption of TAC on Y2O3 powder surfaces. The suspensions with solid loadings up to 35 vol% were achieved with further addition of Tetramethylammonium hydroxide (TMAH) into the dispersing system. The consolidated green bodies were treated by cold isostatic pressing to further increase the green density. Transparent Y2O3 ceramics were prepared after vacuum-sintering at 1700 °C for 5 h. The transmittances of the sample were 74.5% at 800 nm and 79.8% at 2000 nm, respectively.  相似文献   

17.
The rheological behaviour of aqueous suspensions of alumina platelet–hydroxyapatite mixtures for slip casting was investigated. The stabilisation of the suspensions requires the use of a dispersing agent and the breakdown of powder agglomerates. The addition of alumina platelets to the HAP powder does not modify significantly the behaviour of the suspensions which remains always quasi-Newtonian. Nevertheless, this behaviour becomes shear-thinning at low shear rates for high alumina contents when platelets of small size are used. The viscosity increases at low shear rates with the increase of small platelets content. These modifications are assumed to result from orientation phenomena of alumina disks under shear stress in the direction of flowing. The disk-shaped morphology of alumina is detrimental to the preparation of high density green composites. Suspensions containing between 50 and 70 wt% of powder are castable but the best rearrangement of solid particles during the casting process is reached for suspensions containing 65 wt% of powder.  相似文献   

18.
Recently, great effort has been devoted to obtain porous materials with customized pore size distribution, high surface area and submicrometer sized microstructures or nanostructures. In this work, the viability of colloidal processing routes to obtain porous bulk ceramics using alumina nanopowders and d-fructose as a dispersant and a porosity former has been explored.The rheological behaviour of nanosuspensions was studied in order to assure their stability and to analyse the influence of different parameters (solids loading, fructose content, pH, sonication time). Mesoporous green bodies were obtained by slip casting with d-fructose in concentrations ranging from 5 to 50 wt%. The drying and burning-out conditions were determined by DTA-TG measurements and the sintering cycles were selected from the dynamic sintering curve. Sintered alumina materials with high porosity (>60%), open microstructures, submicrometer sized porosity (dp = 140–210 nm) and grain size lower than 500 nm, were obtained for pieces sintered at temperatures of 1300 and 1400 °C. The influence of different processing parameters on the porosity and the microstructure of the sintered materials is discussed.  相似文献   

19.
As starting materials two commercial nanosized zirconias doped with 3 mol% of Y2O3 were used: a powder of about 100 nm (TZ3YE, Tosoh, Japan) and a colloidal suspension of about 15 nm (Mel Chemicals, UK). Colloidal stability in water was studied for both zirconias in terms of zeta potential as a function of deflocculant concentration and pH. Concentrated suspensions were prepared by dispersing the powder in the colloidal suspension to solids loadings ranging from 5 to 30 vol.% using a sonication probe to achieve dispersion. The rheological behavior was optimized in terms of solids content, deflocculant content and sonication time. Optimized suspensions with up to 25 vol.% solids showed a nearly Newtonian behavior and extremely low viscosities and maintain stable for long times (days) which is an important drawback of conventional nanoparticle suspensions. Samples obtained by slip casting in plaster moulds were used for dynamic sintering studies and dense, nanostructured specimens were obtained at temperatures of 1300–1400 °C.  相似文献   

20.
Manganese-doped zinc aluminate spinel (ZnAl2O4:Mn; Mn=0–6.0 mol%) phosphor nanoparticles were prepared by the sol–gel process. The effects of thermal annealing and dopant concentration on the structure, microstructure and luminescence of the powder phosphors were investigated. The X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) results confirmed that a single-phase spinel started to crystallize at around 600 °C for the investigated powders. On heating at 600–1200 °C, the powders had the average crystallite sizes of around 12–33 nm. The crystallite size and lattice constant increased as the doping level of Mn increased. FT-IR spectra exhibited only absorption bands of the AlO6 octahedral groups, which suggested that the powder phosphors mainly crystallized in a normal spinel structure. Scanning electron microscopy (SEM) investigations showed the primary particle sizes were around 20–25 nm for the powders annealed at 1000 °C, and less than ca. 50 nm for those annealed at 1200 °C. Photoluminescence (PL) spectra under UV or visible light excitation exhibited a strong green emission band centered at 510 nm, corresponding to the typical 4T1(4G)—6A1(6S) transition of tetrahedral Mn2+ ions. The most intense PL emission was obtained by exciting at 458 nm. The PL intensity was significantly enhanced by the improved crystallinity and diminished OH? groups. Optimum brightness occurred at a doping of 3.0 mol% Mn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号