首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The material, boron nitride (BN), is chemically and thermally stable which is desirable for high-speed machining in demanding chemical and thermal environments. Although BN’s hardness is lower than that of single polycrystalline diamond, a novel laser/waterjet heat treatment process provides a new approach to increase the hardness of the dual-phase 50% cubic and 50% wurtzite (cBN/wBN) composite close to or as high as diamond’s hardness. Results indicate that experimentally measured hardness increase is dependent on the processing parameter such as laser fluence and overlap between heat treatment passes. Statistical analysis is carried out to identify the processing parameter that result in maximum hardness increase.  相似文献   

2.
Deposition of cubic boron nitride films on diamond-coated WC:Co inserts   总被引:1,自引:0,他引:1  
Cubic boron nitride (cBN) thin films were deposited on diamond-coated tungsten carbide (WC) cutting inserts using electron cyclotron resonance (ECR) microwave plasma chemical vapor deposition (MPCVD). The effects of gas flow rate and substrate bias on the phase composition and structure of the BN films deposited on diamond surfaces were studied. It was revealed that both the cubic phase formation and the selective etching of hexagonal phase were controlled by modulating the hydrogen and boron trifluoride flow rate ratio. By the trial and error method the gas flow rate ratio and substrate bias voltage were optimized. Moreover the phase composition of the BN film was found to be affected by the thickness of diamond buffer layer and interrelated to the effective substrate bias. The hardness of the resulting cBN films reached the value of 70 GPa. In the synthesized coatings, the diamond beneath renders the best mechanical supporting capacity while the top cBN provides the superior chemical resistance and extreme hardness. The cBN/diamond bilayers deposited on WC inserts may serve as universal tool coatings for machining steels and other ferrous metals.  相似文献   

3.
βSiAlON-cubic boron nitride (cBN) composites were consolidated by spark plasma sintering, and the effects of holding time and heating rate on the phase transformation of cBN and Vickers hardness were investigated. The cBN phase transformed into hexagonal BN (hBN) and the hardness decreased with increasing holding time. The phase transformation from cBN to hBN was retarded by increasing the heating rate, resulting in increased hardness.  相似文献   

4.
Synthesizing bulk nanocrystalline materials is challenging since grain growth should be suppressed whereas densification promoted. Here, we demonstrate a novel route to synthesize superhard bulk nanocrystalline cubic boron nitride (cBN), which combines the use of emulsion detonation and high-pressure high-temperature transformation-assisted consolidation. The emulsion detonation process activates BN to possess unique structure and chemistry, i.e. wurtzitic BN nanograins in hexagonal BN matrix with enhanced structural disordering and oxygen impurity, a combination that enhances the nucleation rate of cBN and its densification leading to the formation of bulk nanocrystalline cBN at reduced conditions. The cBN, synthesized at 7.5 GPa and 1800 °C, displayed Vickers hardness values of 50?62 GPa for 5?20 N loads. The findings in the study suggest a feasible solution to synthesize bulk nanocrystalline cBN in a more scalable way, while also providing design insights on how to refine grain growth while enhancing densification to synthesize bulk nanocrystalline materials.  相似文献   

5.
The infiltration of compacted cubic BN (cBN) with molten aluminum has been investigated as a potential route for a cheap and easy method of manufacturing cBN/metal composites. CBN compacts have been infiltrated with molten Al at a temperature between 670 and 800 °C and pressure of 15 MPa in vacuum. At these temperatures no pronounced interactions between hexagonal and cubic BN with Al was observed, allowing the complete infiltration of cBN with 12 μm mean grain size. After infiltration at 800 °C, the temperature was increased without pressure to convert aluminum into borides and AlN. The hardness of the resulting materials depends on the content of hexagonal, cubic BN and the rate of conversion of Al into borides and AlN. The infiltration height of less than 1 mm obtained from infiltrating the 3 μm cBN powder green compacts gave a hardness of 22.0 ± 0.6 GPa after heat treatment.  相似文献   

6.
This paper summarizes theoretical and experimental studies of cBN–TiN and cBN–TiC of cBN:TiN/TiC molar ratio 1:1 and 2:1. Theoretical calculations show that, at temperatures between 1000 and 1400°C, TiN reacts with BN forming one new phase, TiB2, and that TiC reacts with cBN forming two new phases, TiB2 and TiC0.8N0.2.. Experimental cBN–TiC/TiN composites were prepared by high pressure hot pressing and the samples were subsequently heat treated.After heat treatment, sinters of cBN–TiN/TiC were characterized using transmission electron microscopy and X-ray diffraction. The samples exhibited a dense polycrystalline structure, and a thin layer of fine TiB2 was visible at the BN–binder interface. It was found that hardness decreased significantly after heat treatment.  相似文献   

7.
Although the high hardness and chemical stability of cubic boron nitride (cBN) complicate its machining, the mass decrease of cBN in a steam environment at high temperature has been reported. In this study, we investigated hydrothermal-reaction-assisted laser drilling of cBN in various environments. A single-crystalline cBN grain, binder-containing sintered cBN, and binderless sintered cBN were irradiated with an Ar ion laser in water and steam, and in gas atmospheres. The cBN reacted with water, and NH4+ or NH4+-N and boric acid were produced. Hydrothermal-reaction-assisted machining was not effective for binder-containing sintered cBN, but was effective for single-crystalline cBN and binderless sintered cBN.  相似文献   

8.
Using a turbostratic pyrolytic boron nitride as a starting material, we synthesized a variety of ultrahard polycrystalline cubic boron nitride (PcBN) as a function of the heating duration changing from 1 to 60?min under a constant temperature and pressure conditions (1950?°C and 25?GPa) using a multi-anvil apparatus. When the heating duration was less than 13?min, ultrafine nano-polycrystalline cBN (U-NPcBN) with the mean grain size of <50?nm was produced. Among these U-NPcBNs those synthesized with 11–13?min were found to have a uniform texture composed purely of cBN (i.e. with no wurzite BN residue) and a Knoop hardness of >53?GPa, which is 20% higher than that of the hardest conventional binderless PcBN in practical use. Furthermore, the PcBNs synthesized with 18–20?min showed a unique nanocrystalline texture composed of relatively coarse grains dispersed in a fine grained matrix and even higher Knoop hardness (54.5–55.2?GPa).  相似文献   

9.
《Diamond and Related Materials》2001,10(9-10):1868-1874
Cubic boron nitride films were synthesized on silicon substrates by DC-bias-assisted DC jet chemical vapor deposition in an Ar–N2–BF3–H2 system. By this method, the deposition of cBN at high gas pressure of 50 torr became possible, and the conditions of cBN CVD approached to those of diamond CVD. cBN films with low residual stress (1–2 GPa) and with large crystal size of up to several hundred nanometers were obtained and clear Raman peaks of cBN appeared. Furthermore, the deposition rate was as high as 0.3 μm/min at the initial stage and over 20-μm-thick BN films were obtained for a 3-h deposition. These remarkable improvements are attributed to the preferential etching effect of fluorine to sp2 bonds and the decrease of the bombarding energy of ions.  相似文献   

10.
Four kinds of BN powders—amorphous BN with B2O3, partially crystallized BN without B2O3, well-crystallized hBN with B2O3, and well-crystallized hBN without B2O3—were prepared to determine the effect of B2O3 on the crystallization of amorphous BN and the effect of BN crystallinity on the formation of cBN under high pressure (4–5 GPa) and at high temperature (1350–1450°C). The amorphous BN with B2O3 easily crystallized and transformed to cBN in the presence of A1N catalyst, while the partially crystallized BN without B2O3 did not. The well-crystallized hBN transformed very slowly to cBN without B2O3, in contrast to fast transformation with B2O3. It is thus found that the transformation from hBN to cBN in the presence of AIN catalyst is determined by the degree of BN crystallinity as well as the presence of B2O3. Cubic BN can be synthesized only from crystallized hBN under the experimental conditions used. The formation of cBN from amorphous BN is possible through its prior crystallization, which can occur in the presence of B2O3.  相似文献   

11.
β-SiAlON–cubic boron nitride (cBN) composites were prepared from β-SiAlON and cBN powders at 1600°–1900°C under a pressure of 100 MPa by spark plasma sintering. The effects of cBN content and sintering temperature on densification and phase transformation of the β-SiAlON–cBN composites were studied. When 10–30 vol% cBN was added to β-SiAlON, the shrinkage rate of the compacts increased. The compacts of β-SiAlON–BN composites originally containing 10–30 vol% cBN ceased to shrink at a temperature lower than that of β-SiAlON and the density of the composites increased. The densification of β-SiAlON–BN composites originally containing >40 vol% cBN was suppressed. The phase transformation of cBN to hexagonal BN in the β-SiAlON–BN composite was inhibited to a greater degree than that in the cBN body.  相似文献   

12.
Boron nitride (BN) films with different cubic and hexagonal phase compositions were deposited on silicon substrates via diamond interlayers by magnetron sputtering and electron cyclotron resonance microwave plasma chemical vapor deposition. The tribological behaviors of the BN films were investigated systematically using a ball-on-disc tribometer with silicon nitride as the counterpart. Comparison studies were also performed on sintered cubic and hexagonal BN compacts. The influence of phase compositions and surface roughness of BN coatings on their tribological characteristics was studied. The cubic BN (cBN) films showed excellent wear resistance against silicon nitride. The wear rate of the cBN films was estimated to be about 1.0 × 10?7 mm3/N m by measuring the cross-sectional area of the wear track after the sliding test over a distance of 12 km.  相似文献   

13.
The thresholds for laser action at 309 nm wavelength from highly n-doped homogeneous diamond crystals (as opposed to the F-centre diamond laser) at excitation by electron beam irradiation have been evaluated by analogy with calculations which predicted the laser thresholds of electron beam irradiated GaAs lasers. With the condition that the material has to be a direct band semiconductor, the results of Picket and Mehl (SPIE, 877 (1988) 64) are used for calculations at very high stresses, allowing the laser wavelength to be shifted even further into the UV. In the present case, this stress is produced by crystal defects, and is similar to the stress produced in silicon after strong ion implantation. By comparison with other e-beam excited lasers, the UV diamond laser should achieve a high efficiency of up to 35%.  相似文献   

14.
Cubic boron nitride (cBN) is second only to diamond in a number of extreme material properties, and its performance exceeds diamond in many applications involving contact with ferrous alloys and/or high temperatures. However, its properties are less well understood. We have sintered cBN powder (2–4 μm or 8–12 μm particle size) into pure, translucent, polycrystalline compacts by pressing at a pressure of 7.7 GPa and temperatures from 2100 to 2350°C without any sintering agent. We have determined the Young's modulus E, shear modulus G, and Poisson's ratio ν of a number of translucent polycrystalline cBN compacts, in the form of free-standing disks, using the dynamic resonance method. The measured values for E, G, and ν lay in the ranges of 665–895 GPa, 295–405 GPa, and 0.11–0.15, respectively, depending on the grain size of the cBN starting material and the sintering temperature. These values may be compared with the theoretical values of E, G, and ν for pure, equiaxed, cBN of 909 GPa, 405 GPa, and 0.12, respectively. Combining the Young's modulus with previous Vickers hardness measurements, the fracture toughness KIC of well-sintered translucent PCBN is evaluated as 6.8 MPa m1/2. The dependence of the elastic properties on the synthesis conditions is discussed in the context of the microstructure and of related material properties.  相似文献   

15.
Cubic boron nitride (c-BN) is a well known material to be used in machining of ferrous metallic alloys, namely as a coating. However, in most practical cases, there is a lack of adhesion to the substrate material. In this work, BN coatings were deposited by magnetron sputtering on silicon nitride (Si3N4) ceramic substrates using an intermediate layer of CVD microcrystalline (MCD) or nanocrystalline diamond (NCD). The goal was to improve the c-BN content by using diamond interlayers, and to optimize film adhesion to the substrate by employing such ceramic, which is known to provide very high adhesion strength to CVD diamond. The BN/NCD/Si3N4 combination demonstrated to be unique regarding the absence of delamination at both the BN/diamond and diamond/substrate interfaces, also providing the highest c-BN phase content.  相似文献   

16.
A sp2 bonded boron nitride (sp2 BN) surface layer is sometimes observed on top of cubic boron nitride (cBN) grains for BN films deposited using ion-assisted PVD techniques. Understanding the formation of such surface layer gives a clue to the cBN growth mechanisms. In the current study, the microstructure and phase composition near the top surface of several BN films were investigated in order to clarify the formation mechanism of such a surface layer. All the films investigated were synthesized using ion-assisted PVD techniques, but with different deposition parameters. It was found that such a surface layer is not necessarily present in some of the cBN growth, and its presence depends on the bombardment of ion energy during deposition. The cBN growth mechanisms are discussed based on these observations.  相似文献   

17.
Cubic boron nitride (cBN)-cemented carbide composites have gained attraction over the last few years because of their potential uses as wear parts. The densification behavior of cBN—hard metal composites by glass encapsulation hot isostatic pressing—has been investigated. Composites with different cBN grades (from 0/0.5 to 6/12 μm particle sizes) and cBN content (up to 50 vol%) were selected for this study. Near-full densification was obtained at temperatures between 1100° and 1200°C, and pressures between 150 and 200 MPa, respectively, while no phase transformation of cBN into the low-hardness hexagonal form has been detected by X-ray diffraction. The addition of cBN to the hard metal base material led to an increase of hardness, a significant increase of fracture toughness ( K I C measured by Vickers indentation), and a moderate decrease of mechanical strength (determined by three-point bending).  相似文献   

18.
The Vickers hardness of dense Al2O3-cubic BN (cBN) composites prepared by spark plasma sintering under a moderate pressure of 100 MPa at 1200-1600 °C was investigated at indentation loads of 0.098-19.6 N. The BN grains in the Al2O3-BN composite prepared at 1300 °C showed no transformation from the cBN to hBN phase, and the hardness was 59 GPa at 0.098 N. The hardness of the Al2O3 matrix in the Al2O3-BN composites containing 10-30 vol% cBN prepared at 1300-1400 °C was around 25 GPa at 0.098 N, which was higher than monolithic Al2O3 bodies prepared at the same temperatures. The hardness of the Al2O3 matrix in the Al2O3-BN composites decreased with increasing sintering temperature. The increase in the hardness of the Al2O3 matrix may be due to the decrease in the size of Al2O3 grains in the Al2O3-BN composites owing to the addition of cBN particles and the decrease in sintering temperature. The Meyer exponents of the monolithic Al2O3 bodies and Al2O3-BN composites were 1.90-1.94 independent of cBN content.  相似文献   

19.
The sharp threshold in substrate temperature below which cubic boron nitride (cBN) cannot be formed in energetic film-deposition processes was investigated. We found that cBN could be synthesized below the threshold temperature on top of cBN that had been previously formed above the threshold temperature. That the initial nucleation of cBN is more strongly dependent on temperature than its subsequent growth is suggested. How the structure of the sp2-bonded BN that accompanied cBN growth changed with temperature was also investigated. Lowering the substrate temperature decreased the local ordering within the graphitic planes, and below the threshold temperature the separation of the graphitic planes increased dramatically. How these structural changes may influence the nucleation of cBN is discussed.  相似文献   

20.
《Ceramics International》2023,49(1):635-658
Nickel-based superalloy is a critical material for turbine engine components in the aerospace application, but the poor machinability and low machining efficiency have further hampered it to be used widely. Cubic boron nitride (cBN), having extreme hardness and chemical inertness, is the potential candidate to process superalloys. In this paper, we systematically investigated the tool wear characteristic of cBN at different cutting speeds in dry turning of Inconel 718 by experiments and FEM simulations. The FEM model with initial flank wear land (VB) was established and validated. Effects of cutting speeds (200–400 m/min) on cBN tool life and wear mechanisms were systematically investigated. Effects of tool flank wear on cBN tool cutting edge temperature field and Inconel 718 machined surface layer stress distribution were analyzed by FEM simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号