首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bismuth sodium titanate [(Bi0.5Na0.5)TiO3 or BNT] ceramics incorporated with 0, 1, 5, 10, 15 and 20 mol% niobium were prepared by conventional solid state reaction method. The green bodies were sintered at 1050 °C for 2 h to obtain dense ceramics. The effects of substitution of niobium ion for titanium ion in BNT ceramics on micro-structure and dielectric properties were investigated. X-ray diffraction analysis showed the presence of a secondary phase when more than 5 mol% niobium was added. Within the solubility limit, Nb doping caused the grain size of BNTNb to be smaller than the undoped sample. The investigation of the dielectric properties showed that the transition temperature (Tc) was found to shift towards lower temperature as the content of Nb increased. In this research, the donor-type behavior and induced charged defects had significant influence on the electrical properties of Nb-doped BNT ceramics.  相似文献   

2.
《Ceramics International》2016,42(9):10758-10763
Large size Ba4.2Nd9.2Ti18O54 (BNT) ceramics doped with MnCO3, CuO and CoO were prepared by the conventional solid-state method. Only a single BaNd2Ti4O12 phase was formed in all samples. No second phase was found in the XRD patterns. The bulk density increases slightly because of the dopants. The SEM results showed that the grain size of Mn2+and Cu2+-doped BNT ceramics became larger with the increasing amount of dopants. The permittivity of all samples stays the same. However, the Q×f value of BNT ceramics increases by doping, especially with Mn2+ ions. The conductivity of BNT ceramic doped with Mn2+(0.5 mol‰) under high temperature is lower than that without doping. There are fewer defects in Mn2+-doped BNT ceramics. The XPS results indicated that Ti reduction was suppressed in BNT ceramics doped with 0.5 mol‰ Mn2+. BNT ceramics doped with 0.5 mol‰ Mn2+ ions sintered at 1320 °C for 2 h exhibited good microwave dielectric properties, with εr=88.67, Q×f=7408 GHz and τf = 82.98 ppm/°C.  相似文献   

3.
Structure, dielectric permittivity, strain, electric (E) polarization, and piezoelectric responses of (Bi1/2Na1/2)0.925Ba0.075(Ti1−xZrx)O3 (BNT7.5BT-100xZr; x = 0–0.04) ceramics were investigated as functions of poling E field and temperature. The BNT7.5BT ceramic reveals a phase transition from P4bm nanodomains to long-range-ordered P4mm domains. The Zr-doped BNT7.5BT ceramic reveals a reversible change of unit cell with dynamically fluctuating polar nanoregions, which are responsible for the large strain. The poled BNT7.5BT ceramic displays a depolarization temperature of Td = 90 °C, which correspond to a phase transition from ferroelectric to relaxor states. The Zr-doped BNT7.5BT ceramics have Burns temperatures (TB) in the region of 400–435 °C, below which polar nanoregions begin to develop. The Zr-doped BNT7.5BT ceramics display wide diffuse phase transitions, suggesting a transition from R + T to T phases. BNT7.5BT-2Zr ceramic shows a temperature dependent linear large strain of 0.482% at 150 °C and can be a potential candidate for lead-free actuator.  相似文献   

4.
Systematic investigation on phase transition, dielectric and piezoelectric properties of (1-x)K0.5Na0.5Nb0.997Cu0.0075O3-xSrZrO3 (x = 0, 0.03, 0.06, 0.09, 0.12, 0.15, abbreviated as KNNC-100xSZ) ceramics was carried out. Due to the coexistence of orthorhombic and tetragonal phase in a wide temperature range, a diffused polymorphic phase transition (PPT) region was achieved in KNNC with x  0.06. KNNC-12SZ ceramics exhibited high dielectric permittivity (∼1679), low dielectric loss (∼0.02) and small variation (Δe'/ε'25 °C  15%) in dielectric permittivity from −78 °C to 237.3 °C. KNNC-6SZ ceramic possessed a high level of unipolar strain (∼0.15%) and maintained a smaller variation of ±12% under the corresponding electric field of 60 kV cm−1 at 10 Hz from 25 °C to 175 °C. d33*, which was calculated according to the unipolar strain at 60 kV cm−1, was 230 pm V−1 and remained stable below 100 °C. Therefore, our work provided a new promising candidate for temperature-insensitive capacitors and piezoelectric actuators.  相似文献   

5.
《Ceramics International》2007,33(6):1041-1046
Lead-free (1  x)BaTiO3xBi0.5Na0.5TiO3 (x = 0.01, 0.02, 0.05, 0.1, 0.2, 0.3) ferroelectric ceramics were fabricated by the conventional ceramic technique. Sintering was made at 1200 °C for 2–4 h in air atmosphere. The crystal structure was investigated by X-ray diffraction. The dielectric and ferroelectric properties were also studied. Room temperature permittivity was found to decrease as Bi0.5Na0.5TiO3 (BNT) content increases. Only the sample with 0.3 mol BNT was found to have relaxor behaviour. The Tc shifted slightly only for BNT addition lower than 0.1 mol. The highest Tc (about 150 °C) was obtained for 0.2 mol BNT addition. The remanent polarization, Pr, decreases whereas the coercive field, Ec, increases monotonously as the BNT content increases.  相似文献   

6.
This research studied the effect of Nb doping on Bi0.5Na0.5[Ti0.41Zr0.59]O3 (when Nb concentration = 0.00, 0.01, 0.03, 0.05, 0.07 and 0.09 mol fraction). Nb doped BNTZ ceramics were fabricated using a conventional mixed-oxide method. All samples were calcined at a temperature of 700 °C for 2 h and sintered at a temperature of 900 °C for 2 h. X-ray diffraction patterns suggested that the compounds possessed rhombohedral perovskite structure. SEM micrographs indicated that average grain size decreased as the amount of Nb additives increased. The electrical resistivity showed a decreasing trend with increasing Nb concentration due to excess charge present in the sample. The dielectric constant and dielectric loss of samples showed no particular trend when Nb was added but the optimum was observed when 0.05–0.07 Nb mol fraction was present in BNTZ ceramics. In this study, both microstructure and donor-type effects played an important role in determining electrical resistivity and dielectric properties of these ceramics.  相似文献   

7.
《Ceramics International》2016,42(14):15664-15670
Sodium bismuth titanate (BNT) nanopowder of molar composition 50/50 (Na0.5Bi0.5TiO3) was prepared by a sol-gel processing method. The structure and microstructure of the precursor gel as well as the ferroelectric, pyroelectric, dielectric and piezoelectric properties of the BNT were studied. BNT crystallized in the rhombohedra perovskites structure Na0.5Bi0.5TiO3 was obtained from the precursor gel by heating at 700 °C for 2 h in air. The BNT ceramic at 1100 °C sintering temperature present high crystallinity, good dielectric properties at 1 kHz (ε′=885, tan δ=0.03, Tc=370 °C), piezoelectric properties (k33=0.39, c33=105 GPa, e33=12.6 C/m2, d33=120 pC/N), high remnant polarization (Pr=47 μC/cm2) and pyroelectric coefficient (p=707 μC/m2 K) and low coercive field (Ec=55 kV/cm). Hence, the BNT prepared by sol-gel method could be used for silicon based memory device application where a low synthesis temperature is a key requirement.  相似文献   

8.
The effect of B2O3 addition on the sintering, microstructure and the microwave dielectric properties of LiNb0.6Ti0.5O3 ceramics have been investigated. It is found that low-level doping of B2O3 (≤2 wt.%) can significantly improve the densification and dielectric properties of LiNb0.6Ti0.5O3 ceramics. Due to the liquid phase effect of B2O3 addition, LiNb0.6Ti0.5O3 ceramics could be sintered to a theoretical density higher than 95% even at 880 °C. No secondary phase was observed for the B2O3-doped ceramics. There is no obvious degradation in dielectric properties for the ceramics with B2O3 additions. In the case of 1 wt.% B2O3 addition, the ceramics sintered at 880 °C show good microwave dielectric properties of ɛr = 70, Q × f = 5400 GHz, τf = −6.39 ppm/°C. It represents that the ceramics could be promising for multilayer low-temperature co-fired ceramics (LTCC) applications.  相似文献   

9.
《Ceramics International》2016,42(13):14999-15004
Unfilled tungsten bronze ceramics with a composition of Ba4SmFe0.5Nb9.5O30 were prepared by the conventional solid-state sintering method. The phase, microstructure, dielectric and ferroelectric properties were studied. Room temperature XRD results indicated that the ceramic occurs in the tetragonal space group P4bm phase with cell parameters of a=b=12.4712(2) Å and c=3.9430(2) Å. The temperature-dependent dielectric properties, XRD data and Raman spectra data indicated that BSFN ceramics exhibit no phase changes from 35 °C to 450 °C. Fitting of a Vogel-Fulcher relationship with an activated energy Ea of 0.11 eV indicates an unambiguous dielectric relaxor state near room temperature. Furthermore, the BSFN ceramics exhibited residual polarization and coercive field of 3.45 µC/cm2 and 24.65 kV/cm, respectively.  相似文献   

10.
《Ceramics International》2016,42(8):9949-9954
In this report, the effects of the calcination temperature of (K0.5Na0.5)NbO3 (KNN) powder on the sintering and piezoelectric properties of KNN ceramics have been investigated. KNN powders are synthesized via the solid-state approach. Scanning electron microscopy and X-ray diffraction characterizations indicate that the incomplete reaction at 700 °C and 750 °C calcination results in the compositional inhomogeneity of the K-rich and Na-rich phases while the orthorhombic single phase is obtained after calcination at 900 °C. During the sintering, the presence of the liquid K-rich phase due to the lower melting point has a significant impact on the densification, the abnormal grain growth and the deteriorated piezoelectric properties. From the standpoint of piezoelectric properties, the optimal calcination temperature obtained for KNN ceramics calcined at this temperature is determined to be 800 °C, with piezoelectric constant d33=128.3 pC/N, planar electromechanical coupling coefficient kp=32.2%, mechanical quality factor Qm=88, and dielectric loss tan δ=2.1%.  相似文献   

11.
The effects of composition, sintering temperature and dwell time on the microstructure and electrical properties of (0.75 ? x)BiFeO3–0.25BaTiO3xBi0.5K0.5TiO3 + 1 mol% MnO2 ceramics were studied. The ceramics sintered at 1000 °C for 2 h possess a pure perovskite structure and a morphotropic phase boundary of rhombohedral and pseudocubic phases is formed at x = 0.025. The addition of Bi0.5K0.5TiO3 retards the grain growth and induces two dielectric anomalies at high temperatures (T1  450–550 °C and T2  700 °C, respectively). After the addition of 2.5 mol% Bi0.5K0.5TiO3, the ferroelectric and piezoelectric properties of the ceramics are improved and very high Curie temperature of 708 °C is obtained. Sintering temperature has an important influence on the microstructure and electrical properties of the ceramics. Critical sintering temperature is 970 °C. For the ceramic with x = 0.025 sintered at/above 970 °C, large grains, good densification, high resistivity and enhanced electrical properties are obtained. The weak dependences of microstructure and electrical properties on dwell time are observed for the ceramic with x = 0.025.  相似文献   

12.
0.96(K0.48Na0.52)NbO3-0.03[Bi0.5(Na0.7K0.2Li0.1)0.5]ZrO3-0.01(Bi0.5Na0.5)TiO3 single crystals were grown for the first time by the solid state crystal growth method, using [001] or [110]-oriented KTaO3 seed crystals. The grown single crystal shows a dielectric constant of 2720 and polarization-electric field loops of a lossy normal ferroelectric, with Pr = 45 μC/cm2 and Ec = 14.9 kV/cm, while the polycrystalline samples with a dielectric constant of 828 were too leaky for P-E measurement due to humidity effects. The single crystal has orthorhombic symmetry at room temperature. Dielectric permittivity peaks at 26 °C and 311 °C, respectively, are attributed to rhombohedral-orthorhombic and tetragonal–cubic phase transitions. Additionally, Raman scattering shows the presence of an orthorhombic-tetragonal phase transition at ∼150 °C, which is not indicated in the permittivity curves but by the loss tangent anomalies. A transition around 700 °C in the high temperature dc conductivity is suggested to be a ferroelastic-paraelastic transition.  相似文献   

13.
(1?x)BaTiO3xK0.5Bi0.5TiO3 (abbreviated as BT–KBT, 0.10≦x≦0.15) dielectric ceramics were prepared by a conventional oxide mixing method. The effects of KBT content on the densification, microstructure and dielectric properties of BT ceramics were investigated. The density characterization results show that the addition of KBT significantly lowered the sintering temperature of BT ceramics to about 1280 °C. The XRD results showed that the phase compositions of all samples were pure tetragonal phases. The dielectric constant and dielectric loss firstly increased and then decreased with the increase of KBT. In addition, dielectric constant and dielectric loss versus frequency were characterized in the frequency range from 100 Hz to 2 MHz. It is found that the dielectric constant and the dielectric loss changed with the increase of KBT contents regularly.  相似文献   

14.
《Ceramics International》2016,42(8):9728-9736
The dielectric behavior, impedance spectroscopy and energy-storage properties of 0.85[(1−x)Bi0.5Na0.5TiO3–xBaTiO3]–0.15Na0.73Bi0.09NbO3 [(BNT–xBT)–NBN] ternary ceramics were investigated. Temperature dependent permittivity curves displayed two depressed anomalies, resulting in significantly improved dielectric temperature stability. (BNT–9BT)–NBN showed a permittivity of 1680 at 150 °C with Δε/ε150 °C varying no more than ±10% up to 340 °C. From the complex impedance analysis, grain and grain boundary shared the same time constant. The high temperature resistivity followed the Arrhenius law with Ea=1.7–2.0 eV, suggesting intrinsic band-type electronic conduction. The maximum energy-storage density of all the samples reached 1.1–1.4 J/cm3, accompanied with good temperature stability in the range of 25–140 °C. These results indicate that (BNT–xBT)–NBN system should be a promising lead-free material for energy-storage capacitor applications.  相似文献   

15.
The sintering temperature of BaSm2Ti4O12 (BST) and BaNd2Ti5O14 (BNT) ceramics was approximately 1350 °C and decreased to 875 °C with the addition of BaCu(B2O5) (BCB) ceramic powder. The presence of the liquid phase was responsible for the decrease of the sintering temperature. The liquid phase is considered to have a composition similar to the BaO-deficient BCB. The bulk density and dielectric constant (ɛr) of the specimens increased and reached saturated value with increasing BCB content. The Q-value initially increased with the addition of BCB, but decreased considerably when a large amount of BCB was added, because of the presence of the liquid phase. Good microwave dielectric properties of Q × f = 4500 GHz, ɛr = 60 and τf = −30 ppm/°C were obtained for the 16.0 mol% BCB-added BST ceramics sintered at 875 °C for 2 h. Moreover, the BST and BNT ceramics containing BCB show good compatibility with silver metal.  相似文献   

16.
《Ceramics International》2016,42(15):16798-16803
Na0.5Bi0.5TiO3 (NBT) based oxide-ion conductor ceramics have great potential applications in intermediate-temperature solid oxide fuel cells (SOFCs) and oxygen sensors. Na0.5Bi0.49Ti1−xMgxO3−δ ceramics with x=0, 0.01, 0.02, 0.03, 0.05 and 0.08 were prepared by conventional solid-state reaction. XRD measurement and SEM analysis revealed the formation of pure perovskite structures without secondary phase. MgO doping greatly decreased the sintering temperature and inhibited grain growth. AC impedance spectroscopy measurement was adopted to measure the total conductivity, which was found to increase with MgO doping content ranging from 0 to 3 mol% and subsequently to decrease. High oxygen ionic conductivity σt=0.00629 S/cm was achieved for sample doped with 3 mol% MgO at 600 °C in air atmosphere.  相似文献   

17.
This paper reports the results of synthesis and sintering studies as well as dielectric properties of Pb(Fe1/2Ta1/2)O3 (PFT) relaxor ferroelectric ceramics. Influence of doping with MnO2 and Co3O4 (0.1–1 mol%) on resistivity and dielectric characteristics were investigated. The dielectric permittivity and dissipation factor of the ceramics were determined as a function of temperature in the range from −55 to 500 °C at frequencies 10 Hz to 1 MHz. DC resistivities of the samples were measured in the temperature range 20–500 °C. Two maxima in dielectric permittivity versus temperature curves were observed, dependent on frequency and the content of dopants. The investigated PFT ceramics were characterized by high dielectric permittivity of 3500–6700 at the transition temperature and 900–17,000 at the second maxima.  相似文献   

18.
《Ceramics International》2017,43(12):9060-9066
In this paper, we prepared lead-free (1-x)BaTiO3-xBi(Zn0.5Ti0.5)O3 (x=0.04, 0.08, 0.10, and 0.14) ceramics by a conventional solid-state reaction technique. Pure perovskite structures and dense microstructures were demonstrated for all the compositions. Interestingly, it was found that the sintering temperature tended to decrease with increasing the Bi(Zn0.5Ti0.5)O3 content. It should be stressed that a low sintering temperature of 1050 °C was utilized for the composition of x=0.14. Moreover, the dielectric permittivity-temperature curve became more flat and the relaxor degree became stronger with the augment in Bi(Zn0.5Ti0.5)O3 content. We also conducted a detailed study on the energy storage performance for all the compositions from 25 °C to 180 °C.We found that relatively temperature-stable energy storage performance could be obtained in the compositions with x=0.08, 0.10 and 0.14 regardless of the evolution of dielectric constant during the test temperature range. In particular, due to a higher field of 12 MV m−1, the discharge energy storage densities of x=0.14 could reach 0.81 J cm−3, 0.80 J cm−3, 0.78 J cm−3, 0.72 J cm−3, and 0.67 J cm−3 with high efficiencies of 94%, 92%, 94%, 88% and 77% at 25 °C, 50 °C, 100 °C, 150 °C, and 180 °C, respectively. All these results demonstrate the (1-x)BaTiO3-xBi(Zn0.5Ti0.5)O3 ceramics are quite promising for temperature-stable energy storage applications.  相似文献   

19.
In order to obtain a new system of (Bi1/2Na1/2)TiO3 (BNT) based lead-free incipient piezoceramics with large strain for practical applications of actuators, we investigated the effect of B-site complex-ion (Fe0.5Nb0.5)4+ (FN)-doped Bi1/2 (Na0.82K0.12)1/2TiO3 ceramics on the phase structure, dielectric, ferroelectric, piezoelectric and electric-field-induced strain properties. All samples exhibited single perovskite phase with pseudocubic symmetry. The room temperature electric-field-induced polarization (P-E) and strain (S-E) hysteresis loops indirectly illustrated ferroelectric-to-relaxor (FE-RE) phase transition. The increasing content of FN doping decreased the FE-RE phase transition temperature, TF-R to below room temperature and induced the reversible FE-RE phase transition, giving rise to a large strain of 0.462% with a normalized strain, d*33 of 660 pm/V at a critical composition of x = 5. A fluctuation of the dielectric curve for BNKT-5 mol% FN ceramics in the spectra around 80 °C before and after polarization suggested that the large strain response can be induced via delicate mixing of the FE and RE phase.  相似文献   

20.
Microwave dielectric ceramic materials based on cerium [CeO2–0.5AO–0.5TiO2 (A = Mg, Zn, Ca, Mn, Co, Ni, W)] have been prepared by a conventional solid state ceramic route. The crystal structure was studied by X-ray diffraction, microstructure by scanning electron microscopy (SEM) techniques and the phase composition was studied using energy dispersive X-ray analysis (EDXA). The sintered ceramics had a relative dielectric constant (ɛr) in the range 17–65 and quality factor Quxf up to 50,000 GHz and a temperature variation of resonant frequency (τf) ranging from a negative value (−62 ppm/°C) to a high positive value (+399 ppm/°C). The majority of the synthesized ceramics were of a two phase composite consisting of a fluorite CeO2 and perovskite ATiO3 phase. The microwave dielectric properties were further tailored by adding various amounts of dopants of different valencies to the calcined powder. This made it possible to either tune τf to zero or improved the quality factor further.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号