首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Meso-porous SnO2 fibers were synthesized using a solvothermal method with metaplexis fruit as the bio-template. The products were characterized by powder X-ray diffraction, high resolution scanning electron microscopy, transmission electron microscopy and nitrogen adsorption/desorption measurements. Results show that SnO2 fibers present a high specific surface area of 73.665 m2/g and a meso-porous structure with the pore size of 7.821 nm, and the crystal size of SnO2 is about 6.5 ± 0.5 nm. The gas sensing performance of the prepared SnO2 fibers toward several volatile organic compounds was investigated. The results show that the meso-porous SnO2 fibers were highly sensitive and selective to n-butanol.  相似文献   

2.
Nanocrystalline pristine and 0.5, 1.5 and 3.0 wt% Pd loaded SnO2 were synthesized by a facile co-precipitation route. These powders were screen-printed on alumina substrates to form thick films to investigate their gas sensing properties. The crystal structure and morphology of different samples were characterized by using X-ray diffraction, scanning electron microscopy and transmission electron microscopy techniques. The 3.0 wt% Pd:SnO2 showed response of 85% toward 100 ppm of LPG at operating temperature of 250 °C with fast response (8 s) and quick recovery time (24 s). The high response toward LPG on Pd loading can be attributed to lowering of crystallite size (9 nm) as well as the role of Pd particles in exhibiting spill-over mechanism on the SnO2 surface. Also selectivity of 3.0 wt% Pd:SnO2 toward LPG was confirmed by measuring its response to other reducing gases like acetone (CH3COCH3), ethanol (C2H5OH) and ammonia (NH3) at optimum operating temperature.  相似文献   

3.
SnO2 nano-spheres/graphene composite was fabricated via a simple one-step hydrothermal method with graphene oxide and SnCl4·5H2O as the precursors. The composite was characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy and surface area measurement. It is shown that fine SnO2 nano-spheres with an average size of 50–100 nm could be homogeneously deposited on graphene nano-sheets layer by layer. The structural feature enabled SnO2 nano-spheres/graphene hybird as an excellent anode material in lithium ion battery. The composite possesses 1306 mA h g?1 of initial discharge capacity and good capacity retention of 594 mA h g?1 up to the 50th cycle at a current density of 100 mA g?1. These results indicate that the composite is a promising anode material in high-performance lithium ion batteries.  相似文献   

4.
Carbon nanotube-encapsulated SnO2 (SnO2@CNT) core–shell composite anode materials are prepared by chemical activation of carbon nanotubes (CNTs) and wet chemical filling. The results of X-ray diffraction and transmission electron microscopy measurements indicate that SnO2 is filled into the interior hollow core of CNTs and exists as small nanoparticles with diameter of about 6 nm. The SnO2@CNT composites exhibit enhanced electrochemical performance at various current densities when used as the anode material for lithium-ion batteries. At 0.2 mA cm?2 (0.1C), the sample containing wt. 65% of SnO2 displays a reversible specific capacity of 829.5 mAh g?1 and maintains 627.8 mAh g?1 after 50 cycles. When the current density is 1.0, 2.0, and 4.0 mA cm?2 (about 0.5, 1.0, and 2.0C), the composite electrode still exhibits capacity retention of 563, 507 and 380 mAh g?1, respectively. The capacity retention of our SnO2@CNT composites is much higher than previously reported values for a SnO2/CNT composite with the same filling yield. The excellent lithium storage and rate capacity performance of SnO2@CNT core–shell composites make it a promising anode material for lithium-ion batteries.  相似文献   

5.
Free-standing single-walled carbon nanotube/SnO2 (SWCNT/SnO2) anode paper was prepared by vacuum filtration of SWCNT/SnO2 hybrid material which was synthesized by the polyol method. From field emission scanning electron microscopy and transmission electron microscopy, the CNTs form a three-dimensional nanoporous network, in which ultra-fine SnO2 nanoparticles, which had crystallite sizes of less than 5 nm, were distributed, predominately as groups of nanoparticles on the surfaces of single walled CNT bundles. Electrochemical measurements demonstrated that the anode paper with 34 wt.% SnO2 had excellent cyclic retention, with the high specific capacity of 454 mAh g?1 beyond 100 cycles at a current density of 25 mA g?1, much higher than that of the corresponding pristine CNT paper. The SWCNTs could act as a flexible mechanical support for strain release, offering an efficient electrically conducting channel, while the nanosized SnO2 provides the high capacity. The SWCNT/SnO2 flexible electrodes can be bent to extremely small radii of curvature and still function well, despite a marginal decrease in the conductivity of the cell. The electrochemical response is maintained in the initial and further cycling process. Such capabilities demonstrate that this model hold great promise for applications requiring flexible and bendable Li-ion batteries.  相似文献   

6.
《Ceramics International》2017,43(9):7216-7221
In the quest of promising Indium free amorphous transparent conducting oxide (TCO), Zn-doped SnO2/Ag/Zn-doped SnO2 (OMO) multilayer films were prepared on flexible polyethylene terephthalate (PET) substrates by RF sputtering at room temperature (RT). Growth parameters were optimized by varying sputtering power and working pressure, to have high electrical conductivity and optical transmittance. Optimization of the thickness of each layer was done by Essential Macleod Program (EMP) simulation to get the higher transmission through OMO multilayer. The sheet resistance and transmittance of 3 at% Zn-doped SnO2 thin film (30 nm) were 2.23 kΩ/□, (ρ ~ 8.92×10−3 Ω∙cm) and 81.3% (at λ ~ 550 nm), respectively. By using optimized thicknesses of Zn-doped SnO2 (30 nm) and Ag (12 nm) and optimized growth condition Zn-doped SnO2/Ag/Zn-doped SnO2 multilayer thin films were deposited. The low sheet resistance of 7.2 Ω/□ and high optical transmittance of 85.1% in the 550 nm wavelength region was achieved with 72 nm multilayer film.  相似文献   

7.
KOH/SnO2 solid superbases of specific morphology and uniform pore structure were synthesized. The SnO2 support was prepared by reflux digestion using graphene oxide as template and employed for the loading of KOH by means of grinding and thermal treatment. With base strength of 26.5  H < 33.0 and superbasic sites of 1.362 mmol g 1, the 20 wt.%KOH/SnO2 catalyst exhibits excellent activity in Knoevenagel condensation under mild conditions. The catalytic efficiency is closely related to the base strength and the amount of superbasic sites. The findings disclose a new route for the synthesis of versatile solid superbases using SnO2 as supports.  相似文献   

8.
《Ceramics International》2016,42(8):9433-9437
In this paper, the ultrafine tin oxides (SnO2) nanoparticles are fabricated by a facile microwave hydrothermal method with the mean size of only 14 nm. Phase compositions and microstructures of the as-prepared nanoparticles have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that the ultrafine SnO2 nanoparticles are obtained to be the pure rutile-structural phase with the good dispersibility. Galvanostatic cycling and cyclic voltammetry results indicate that the first discharge capacity of the ultrafine SnO2 electrode is 1196.63  mAh g−1, and the reversible capacity could retain 272.63 mAh g−1 at 100 mA g−1 after 50 cycles for lithium ion batteries (LIBs). The excellent electrochemical performance of the SnO2 anode for LIBs is attributed to its ultrafine nanostructure for providing active sites during lithium insertion/extraction processes. Pulverization and agglomeration of the active materials are effectively reduced by the microwave hydrothermal method.  相似文献   

9.
The mesoporous carbon nanofibers (MCFs) with large cage-like pores have been fabricated by thermally treating electrospun fibers of polyvinyl alcohol containing tin compound. During the process, tin oxide is reduced to melting tin and the carbon is activated to form the porous carbon. The results of X-ray diffraction and transmission electron microscopy at different temperatures show that particles of SnO2 (∼1.9 nm) exist in the fibers at 300 °C while mixtures of Sn and SnO with rod-like shapes appear in the matrix when the fibers are heated at 400 °C, and that Sn migrates to the surface of fibers and pores are formed in the fibers at higher temperature. Specific surface area of MCFs can reach 800 m2 g−1 and the average diameter of interior pores is about 10.3 nm while the entrance pores are small. The specific capacitance of MCFs is 105 F g−1 and the fabricated symmetrical capacitors exhibit high-rate capacitive properties and excellent stability, Pt nanoparticles which can be densely loaded on MCFs exhibit relatively high activity and stability toward electro-oxidation of methanol, which indicate that MCFs may be used as electrodes for high-rate energy storage and support for catalyst. This approach may be extended to prepare other porous carbon materials.  相似文献   

10.
The precursor was obtained through the reaction between SnCl4·5H2O and NaOH in the presence of PEG400 (polyethylene glycol, M = 400). Tin oxide (SnO2) nano-powders were prepared by heating the precursor with microwave method. SnO2 thick film sensors were fabricated using SnO2 nano-materials as sensing materials. The phase composition and morphology of the material particles were characterized through X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The average particle sizes of the samples obtained with 616 W microwave heating and 800 W microwave heating (20 min) are about 5 and 15 nm, respectively. The influence of the heating duration and heating power on the gas-sensing properties of sensors based on SnO2 nano-materials were investigated. The sensitivities of the sensors based on SnO2 nano-materials heated with 616 and 800 W for 20 min were higher than those of the sensors based on SnO2 nano-materials heated with 136, 264 and 440 W for 20 min. When operating at 200–310 °C, the sensor based on SnO2 heated with 616 W for 20 min exhibits highest sensitivities in all sensors based on SnO2 heated with 616 W for different duration. The sensitivity to a few kinds of organic gases, such as (CH3)3N and (CH3)2CO were studied. It was found that the sensor based on SnO2 nano-materials (with 616 W microwave heating for 20 min) exhibited good performance characterized by high sensitivity and short response time to dilute trimethylamine when operated at 255 °C. The sensitivity to 0.001 ppm (CH3)3N at 255 °C was 3. The response time and recovery time were about 30 and 100 s, respectively.  相似文献   

11.
SnO2 green pellets were submitted to ac electric fields at temperatures below 1350 °C. Electric current pulses occurred and a substantial modification was found in the microstructure of the pellets after application of 80 V cm−1 at 900, 1100 and 1300 °C. Similar experiments were carried out in SnO2 mixed to 2 wt.% MnO2. The linear shrinkage of the pellets was monitored with a dilatometer during the application of the electric field. Scanning electron microscopy micrographs of the pellets show the grain structure evolution after the electric current pulses. The larger is the electric current flow through the SnO2 pellet, the larger are the shrinkage and the average grain size. Even though sintering occurs without significant densification in SnO2, the welding of the grains is evident. The apparent density of green pellets of SnO2 with MnO2 addition sintered at 1100 °C increased 110% with the application of 80 V cm−1, 5 A.  相似文献   

12.
《Ceramics International》2016,42(14):15881-15888
In this study, a series of undoped and Eu-doped SnO2 nanofibers were synthesized via a simple electrospinning technique and subsequent calcination treatment. Field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were carefully used to characterize the morphologies, structures and chemical compositions of these samples. The results reveal that the as-prepared nanofibers are composed of crystallite grains with an average size of about 10 nm and Eu3+ ions are successfully doped into the SnO2 lattice. Compared with pure SnO2 nanofibers, Eu-doped SnO2 nanofibers demonstrate significantly enhanced sensing characteristics (e.g., large response value, short response/recovery time and outstanding selectivity) toward acetone vapor, especially, the optimal sensor based on 2 mol% Eu-doped SnO2 nanofibers shows the highest response (32.2 for 100 ppm), which is two times higher than that of the pure SnO2 sensor at an operating temperature of 280 °C. In addition, the sensor exhibits a good sensitivity to acetone in sub-ppm concentrations and the detection limit could extend down to 0.3 ppm, making it a potential candidate for the breath diagnosis of diabetes.  相似文献   

13.
The pure and transition metal (Co and Fe = 3 and 5 mol%) doped SnO2 nanoparticles have been synthesized by a chemical route using polyvinyl alcohol as surfactant. These nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman, Fourier transform infrared (FTIR) spectroscopy, photoluminescence (PL) and magnetic measurements. The XRD patterns show that all the samples have tetragonal rutile structure without any extra phase and the value of average particle size using FWHM lies within 12–29 nm is also confirmed by TEM. FTIR spectrum has been used to confirm the formation of SnO bond. Raman spectroscopy shows the intensity loss of classical cassiterite SnO2 vibration lines which is an indication of significant structural modifications. From PL, an intense blue luminescence centered at a wavelength ~530 nm is observed in the prepared SnO2 nanoparticles, which is different from the yellow-red light emission observed in SnO2 nanostructures prepared by other methods. The strong blue luminescence from the as-grown SnO2 nanoparticles is attributed to oxygen-related defects that have been introduced during the growth process. These Co and Fe-doped SnO2 nanoparticles exhibit room temperature ferromagnetism and the value of their magnetic moment and phase transition temperature are sensitive to their size and stoichiometric ratio.  相似文献   

14.
We report the synthesis of nanostructured SnO2 by a simple inexpensive sol–gel spin coating method using m-cresol as a solvent. This method facilitates rapid synthesis at comparatively lower temperature enabling formation of nanostructures suitable for gas-sensing applications. Various physicochemical techniques have been used for the characterization of SnO2 thin films. X-ray diffraction analysis confirmed the single-phase formation of tetragonal SnO2 having crystallite size 5–10 nm. SnO2 showed highest response (19%) with 77.90% stability toward 100 ppm nitrogen dioxide (NO2) at 200 °C. The response time of 7 s and recovery time of 20 min were also observed with the same operating parameters. The probable mechanism is proposed to explain the selective response toward nitrogen dioxide. Impedance spectroscopy studies showed that the response to nitrogen dioxide is mainly contributed by grain boundaries. The reproducibility and stability study of SnO2 sensor confirmed its candidature for detection of NO2 gas at low concentration (10–100 ppm) and lower operating temperature.  相似文献   

15.
The Zn-doped SnO2 nanoparticles synthesized by the chemical co-precipitation route and having dopant concentration varying from 0 to 4 at%, were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM) for structural and morphological studies. XRD analyses reveal that all the samples are polycrystalline SnO2 having tetragonal rutile structure with nanocrystallites in the range 10–25 nm. The TEM images show agglomeration of grains (cluster of primary crystallites). A corresponding selected area electron diffraction pattern reveals the different Debye rings of SnO2, as analyzed in XRD. Alcohol sensing properties of all the Zn-doped samples were investigated for various concentrations of methanol, ethanol and propan-2-ol in air at different operating temperatures. Among all the samples examined, the 4 at% Zn-doped sample exhibits the best response to different alcohol vapors at the operating temperature of 250 °C. For a concentration of 50 ppm, the 4 at% Zn-doped sample shows the maximum response 85.6% to methanol, 87.5% to ethanol and 94.5% to propan-2-ol respectively at the operating temperature of 250 °C. A possible reaction mechanism of alcohol sensing has been proposed.  相似文献   

16.
A simple approach is reported to prepare carbon-coated SnO2 nanoparticle–graphene nanosheets (Gr–SnO2–C) as an anode material for lithium ion batteries. The material exhibits excellent electrochemical performance with high capacity and good cycling stability (757 mA h g?1 after 150 cycles at 200 mA g?1). The likely contributing factors to the outstanding charge/discharge performance of Gr–SnO2–C could be related to the synergism between the excellent conductivity and large area of graphene, the nanosized particles of SnO2, and the effects of the coating layer of carbon, which could alleviate the effects of volume changes, keep the structure stable, and increase the conductivity. This work suggests a strategy to prepare carbon-coated graphene–metal oxide which could be used to improve the electrochemical performance of lithium ion batteries.  相似文献   

17.
《Ceramics International》2016,42(15):16677-16684
Composite metal oxide gas sensors were intensely studied over the past years having superior performance over their individual oxide components in detecting hazardous gases. A series of pellets with variable amounts of SnO2 (0–50 mol%) was prepared using wet homogenization of the component oxides leading to the composite tin-zinc ceramic system formation. The annealing temperature was set to 1100 °C. The samples containing 2.5 mol% SnO2 and 50 mol% SnO2 were annealed also at 1300 °C, in order to observe/to investigate the influence of the sintering behaviour on CO detection. The sensor materials were morphologically characterized by scanning electron microscopy (SEM). The increase in the SnO2 amount in the composite ceramic system leads to higher sample porosity and an improved sensitivity to CO. It was found that SnO2 (50 mol%) - ZnO (50 mol%) sample exhibits excellent sensing response, at a working temperature of 500 °C, for 5 ppm of CO, with a fast response time of approximately 60 s and an average recovery time of 15 min. Sensor selectivity was tested using cross-response to CO, methane and propane. The results indicated that the SnO2 (50 mol%)-ZnO (50 mol%) ceramic compound may be used for selective CO sensing applications.  相似文献   

18.
A porous tin peroxide/carbon (SnO2/C) composite electrode coated with an amorphous carbon layer is prepared using a facile method. In this electrode, spherical graphite particles act as supporter of electrode framework, and the interspace among particles is filled with porous amorphous carbon derived from decomposition of polyvinylidene fluoride and polyacrylonitrile. SnO2 nanoparticles are uniformly embedded in the porous amorphous carbon matrix. The pores in amorphous carbon matrix are able to buffer the huge volume expansion of SnO2 during charge/discharge cycling, and the carbon framework can prevent the SnO2 particles from pulverization and re-aggregation. The carbon coating layer on the outermost surface of electrode can further prevent porous SnO2/C electrode from contacting with electrolyte directly. As a result, the repeated formation of solid electrolyte interface is avoided and the cycling stability of electrode is improved. The obtained SnO2/C electrode presents an initial coulombic efficiency of 77.3% and a reversible capacity of 742 mA h g−1 after 130 cycles at a current density of 100 mA g−1. Furthermore, a reversible capacity of 679 mA h g−1 is obtained at 1 A g−1.  相似文献   

19.
Homogeneous silicon oxycarbide (SiOC) ceramic powders were prepared by pyrolysis of cross-linked polysiloxane at different temperatures (1250–1500 °C) under vacuum. The effect of pyrolysis temperature on the pore structure evolution was investigated by means of N2 adsorption, SEM, XRD, IR and element analysis (EA). Studies showed that predominate mesoporous ceramics with the average pore size in the range of 2–13 nm were obtained after pyrolysis in this temperature range. The pore structure transformation is strongly correlated with the thermolytic decomposition process of the used precursor, such as phase separation and carbothermal reduction. At relatively lower temperature (1250–1350 °C), the ceramics had a relative small specific surface areas (35 m2/g) owing to the low degree of carbothermal reduction. However, as the carbothermal degree had an obvious augment at relative higher temperature (1400–1450 °C), the specific surface areas and total pore volume increased and reached to the maximum of 66 m2/g and 0.214 cm3/g, respectively, and subsequently decreased rapidly after 1500 °C for the reason of partial sintering of the nano-sized SiC derived from polysiloxane.  相似文献   

20.
TiO2 is an insulator, but using specific dopants, can modify sharply its electronic structure towards semiconducting behavior. This type of response is widely applied in many electrochemical and electrocatalytical devices, namely chlorine production, hydrocarbon oxidation, CO and CO2 hydrogenation and as electroactive substrata for biological cell growth.Combustion synthesis is a very simple, rapid and clean method for material preparation, which will be used in the preparation of the (1  x)TiO2xSnO2, x = 0.05–0.3. Tin oxalate and titanium isopropoxide are used as precursors for the synthesis. The as-prepared powders are fine and homogeneous, the average particle size is in the range of 5–10 nm, powders and ceramic compact bodies are characterized by DRX, SEM–TEM–EDX, DTA–TG and EIS. The impedance spectroscopy of the sample 10 mol% of SnO2 indicates the presence of several phases which promote a matrix composite based in an electrical TiO2 insulator compatible with an electronic conducting phase tin rich. This could be attributed to the spinodal decomposition effect observed in TiO2–SnO2 system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号