首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
《Ceramics International》2017,43(5):4309-4313
A combination of high-energy ball milling and constant pressure chemical vapor deposition was used to prepare carbon-coated SiO/ZrO2 composites. It was found that the as-prepared composites were composed of amorphous carbon, amorphous SiO, and paracryslalline ZrO2. The electrochemical analysis results revealed excellent electrochemical performances for the composites, including a high initial discharge capacity (1737 mA h g−1), a remarkable cyclic stability (reversible capacity of 721 mA h g−1 at 800 mA g−1, after 100 cycles), and a good rate capability (870 mA h g−1 at 800 mA g−1). These features demonstrate that these composites are promising alternative candidates for high-efficiency electrode materials of Li-ion batteries.  相似文献   

2.
《Ceramics International》2017,43(16):13224-13232
The present study reports on the one-pot synthesis of Ni3V2O8 (NVO) electrodes by a simple metal organic framework-combustion (MOF-C) technique for anode applications in Li-ion batteries (LIBs). The particle morphology of the prepared NVO is observed to vary as irregular rods, porous bitter gourd and hybrid micro/nano particles depending on the concentration of the framework linker used during synthesis. In specific, the orthorhombic phase and the unique bitter gourd-type secondary structure comprised of agglomerated nanoparticles and porous morphologies is confirmed using powder X-ray diffraction, electron microscopies, X-ray photoelectron spectroscopy and N2 adsorption–desorption measurements. When tested for lithium batteries as anode, the bitter gourd-type NVO electrode shows an initial discharge capacity of 1362 mA h g−1 and a reversible capacity of 822 mA h g−1 are sustained at a rate of 200 mA g−1 after 100 cycles. Moreover, at 2000 mA g−1, a reversible capacity of 724 mA h g−1 is retained after 500 cycles. Interestingly, the porous bitter gourd-shaped NVO electrode registered significantly high rate performance and reversible specific capacities of 764, 531 and 313 mA h g−1 at high rates of 1, 5 and 10 A g−1, respectively.  相似文献   

3.
《Ceramics International》2017,43(10):7908-7915
In this work, Li5Cr7Ti6O25 as a new anode material for rechargeable batteries is fabricated through a simple sol-gel method at different calcination temperatures. The X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy, charge/discharge curve and cyclic voltammograms are utilized to study the crystal structures, morphologies and electrochemical properties of as-obtained Li5Cr7Ti6O25 samples. The impact of calcination temperatures on morphologies and electrochemical properties of Li5Cr7Ti6O25 is discussed in detail. The test result shows that the 800 °C is a proper calcination temperature for Li5Cr7Ti6O25 with excellent electrochemical properties. Cycled at 200 mA g−1, it displays a high initial reversible capacity of 146.6 mA h g−1 and retains a considerable capacity of 130.8 mA h g−1 after 300 cycles. Even cycled at large current density of 500 mA g−1, the initial reversible capacity of 129.6 mA h g−1 with the capacity retention of 88% after 300 cycles is achieved, which is obviously higher than that of Li5Cr7Ti6O25 prepared at 700 °C (80.5 mA h g−1 and 68%) and 900 °C (98.4 mA h g−1 and 80%). In addition, in-situ XRD analysis reveals that Li5Cr7Ti6O25 exhibits a reversible structural change during lithiation and delithiation processes. The above prominent electrochemical performance indicates the great potential of the Li5Cr7Ti6O25 obtained at 800 °C as anode material for rechargeable batteries.  相似文献   

4.
《Ceramics International》2015,41(8):9655-9661
The hollow core–shell ZnMn2O4 microspheres are successfully prepared by a solvothermal carbon templating method and then a annealing process. The crystal phase and particle morphology of resultant ZnMn2O4 microspheres are characterized by XRD and TEM. The electrochemical properties of the ZnMn2O4 microspheres as an anode material are investigated for lithium ion batteries. The results show that the ZnMn2O4 microspheres exhibit a reversible capacity of 855.8 mA h g−1 at a current density of 200 mA g−1 after 50 cycles. Even at 1000 mA g−1, the reversible capacity of the ZnMn2O4 microspheres is still kept at 724.4 mA h g−1 after 60 cycles. The enhanced electrochemical performance suggests the promising potential of the hollow core–shell ZnMn2O4 microspheres in lithium-ion batteries.  相似文献   

5.
《Ceramics International》2016,42(14):15634-15642
Sb2O3/reduced graphene oxide (RGO) composites were prepared through a facile microwave-assisted reduction of graphite oxide in SbCl3 precursor solution, and investigated as anode material for sodium-ion batteries (SIBs). The experimental results show that a maximum specific capacity of 503 mA h g−1 is achieved after 50 galvanostatic charge/discharge cycles at a current density of 100 mA g−1 by optimizing the RGO content in the composites and an excellent rate performance is also obtained due to the synergistic effect between Sb2O3 and RGO. The high capacity, superior rate capability and excellent cycling performance of Sb2O3/RGO composites demonstrate their excellent sodium-ion storage ability and show their great potential as electrode materials for SIBs.  相似文献   

6.
《Ceramics International》2017,43(8):6232-6238
Uniform Nb2O5 nanospheres/surface-modified graphene (SMG) composites for anode materials in lithium ion batteries were synthesized by hydrothermal method. The microstructure and morphology of composites were investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscope techniques. The experimental results showed that Nb2O5 nanospheres were tightly and uniformly grown on the surface of SMG nanosheets. Nb2O5 nanospheres/SMG composites exhibited an impressive reversible capacity of 404.6 mA h g−1 at the current density of 40 mA g−1 after 100 cycles, and an excellent rate capacity of 345.5 mA h g−1 at the current density of 400 mA g−1.  相似文献   

7.
《Ceramics International》2016,42(16):18173-18180
It is essential to develop new electrode materials for electrochemical energy storage to meet the increasing energy demands, reduce environmental pollution and develop low-carbon economy. In this work, binder-free NiCo2S4 nanorod arrays (NCS NRAs) on nickel foam electrodes are prepared by an easy and low energy-consuming route. The electrodes exhibit superior electrochemical properties both for alkaline and Li-ion batteries. In 3 M KOH electrolyte, the NCS NRAs achieve a specific capacity of 240.5 mA h g−1 at a current density of 0.2 A g−1, and 105.7 mA h g−1 after 1500 cycles at the current density of 5 A g−1 with capacity retention of 87.3%. As the anode for LIBs, it shows a high initial capacity of 1760.7 mA h g−1 at the current density of 100 mA g−1, corresponding coulombic efficiency of 87.6%, and a rate capacity of 945 mA h g−1 when the current density is improved 10 times. Hence, the NiCo2S4 nanorod arrays are promised as electrode materials with competitive performance.  相似文献   

8.
《Ceramics International》2016,42(4):5397-5402
Lithium (Li)-rich layered oxides are considered promising cathode materials for Li-ion batteries because of their favorable properties. Here, we report our recent finding in the novel oxide, aluminum fluoride (AlF3)-modified Li1.2Mn0.54Ni0.13Co0.13O2 (LMNCAF), which was synthesized via a facile, cost-effective and readily scalable solid-state reaction. LMNCAF possess an F and Al co-doped core structure with a LiF nano-coating on its surface which leads to considerably enhancement in the electrochemical performance of the oxide. The initial discharge capacity (at 0.05 C) increased from 212 mA h g−1 for Li1.2Mn0.54Ni0.13Co0.13O2 to 291 mA h g−1 for LMNCAF. A much higher discharge capacity of 211 mA h g−1 was obtained for LMNCAF after 99 charge/discharge cycles at 0.2 C compared with that of Li1.2Mn0.54Ni0.13Co0.13O2 (160 mA h g−1). Our preliminary results suggest that AlF3 modification is an effective strategy to tailor the physicochemical and electrochemical properties of Li-rich layered oxides.  相似文献   

9.
《Ceramics International》2017,43(15):11967-11972
Stabilizing the layer structures of Mo-based anode materials is still a challenge for Li ion batteries. Herein, we proposed an electrochemical presodiation strategy for MoS2 and MoO3 to improve their cycling stability. It is interesting to note that the cycling stability of as-treated MoS2 and MoO3 was significantly improved. Although the reversible discharge capacity was slightly decreased, the capacity of the pretreated MoS2 at 300 mA g−1 was retained at 345 mA h g−1 after 100 cycles while that of the pristine one decreased to 151 mA h g−1. The capacity of the pretreated MoO3 after 60 cycles was also improved from 275 mA h g−1 (the pristine one) to 460 mA h g−1. The stabilizing effect was further verified by scanning electron microscope (SEM) analysis. Electrochemical presodiation here could be a promising modification strategy for Mo-based anode materials.  相似文献   

10.
《Ceramics International》2016,42(13):14782-14787
NiSb2O6 and reduced graphene oxide (NiSb2O6/rGO) nanocomposites are successfully fabricated by a solid-state method combined with a subsequent solvothermal treatment and further used as anode material of lithium-ion battery. The NiSb2O6/rGO nanocomposites exhibit a higher reversible capacity (of ca. 1240.5 mA h g−1 at a current density of 50 mA g−1), along with a good rate capability (395.2 mA h g−1 at a current density of 1200 mA g−1) and excellent capacity retention (684.5 mA h g−1 after 150 cycles). These good performances could be attributed to the incorporated reduced grapheme oxide, which significantly improves the electronic conductivity of the NiSb2O6.  相似文献   

11.
《Ceramics International》2016,42(16):18568-18572
A novel MnO@Amorphous C-Carbon nanotubes (MnO@C-CNTs) composite is prepared by chemical vapor deposition (CVD). When used as an anode material for Li-ion batteries, the MnO@C-CNTs composite exhibits an initial discharge capacity of 1164 mA h g−1 at 100 mA g−1 and the discharge capacity gradually increased from 571.7 mA h g−1 to 654 mA h g−1 after 100 cycles at 1 A g−1, which shows an increase of the capacity rather than attenuation. Furthermore, the MnO@C-CNTs electrode can deliver a capacity of up to 228 mA h g−1 at 5 A g−1. These results indicate that the three-dimensional conductive network of the MnO@C-CNTs composite could prevent the aggregation of MnO particles, and its open structure allows electrolyte penetration, and reduces the diffusion path of the lithium ions, hence maximizes utilization of the electrochemically active MnO particles, while enhances the conductivity of electrode material and Li+ transport. This work offers a universal approach to design various metal oxides@C-CNTs composite.  相似文献   

12.
《Ceramics International》2017,43(15):11848-11854
LiNi0.5Co0.2Mn0.3O2 (523) coated with ~ 20 nm thick Y2O3 nano-membrane is prepared via a sol-type chemical precipitation process based on electrostatic attraction between the materials. The nano-Y2O3-coated 523 cathode can deliver 160.3 mA h g−1 (87.8% of its initial discharge capacity) after 50 cycles at 1 C (180 mA g−1) between 3.0 and 4.6 V by coin cell testing, while the pristine 523 keeps only 146.2 mA h g−1 with 78.6% capacity retention left. The capacity retention rate increases from 50% to 86.7% after 150 cycles at 1 C in 3.0–4.35 V by soft package testing under 45 °C. Through this novel Y2O3 coating operation, both the charge transfer resistance and the electrode polarization of the 523 electrode have been suppressed, and its structure stability is also improved.  相似文献   

13.
A porous tin peroxide/carbon (SnO2/C) composite electrode coated with an amorphous carbon layer is prepared using a facile method. In this electrode, spherical graphite particles act as supporter of electrode framework, and the interspace among particles is filled with porous amorphous carbon derived from decomposition of polyvinylidene fluoride and polyacrylonitrile. SnO2 nanoparticles are uniformly embedded in the porous amorphous carbon matrix. The pores in amorphous carbon matrix are able to buffer the huge volume expansion of SnO2 during charge/discharge cycling, and the carbon framework can prevent the SnO2 particles from pulverization and re-aggregation. The carbon coating layer on the outermost surface of electrode can further prevent porous SnO2/C electrode from contacting with electrolyte directly. As a result, the repeated formation of solid electrolyte interface is avoided and the cycling stability of electrode is improved. The obtained SnO2/C electrode presents an initial coulombic efficiency of 77.3% and a reversible capacity of 742 mA h g−1 after 130 cycles at a current density of 100 mA g−1. Furthermore, a reversible capacity of 679 mA h g−1 is obtained at 1 A g−1.  相似文献   

14.
《Ceramics International》2017,43(2):1968-1974
3D network-like porous MnCo2O4 nanostructures have been successfully fabricated through a facile and scalable sucrose-assisted combustion route followed by calcination treatment. Benefiting from its advantages of the unique 3D network-like architectures with large specific surface area (216.15 m2 g−1), abundant mesoporosity (2–50 nm) and high electronic conductivity, the as-prepared MnCo2O4 electrode displays a high specific capacitance of 647.42 F g−1 at a current density of 1 A g−1, remarkable capacitance retention rate of 70.67% at current density of 10 A g−1 compared with 1 A g−1, and excellent cycle stability (only 6.32% loss after 3000 cycles). The excellent electrochemical performances coupled with facile and cost effective method will render the as-fabricated 3D network-like porous MnCo2O4 as a promising electrode material for supercapacitors.  相似文献   

15.
《Ceramics International》2016,42(15):16956-16960
In this article, V2O5 with a novel nest-like hierarchical porous structure has been synthesized by a facile solvothermal method and investigated as cathode material for lithium-ion batteries. The nest-like V2O5 with a diameter of about 1.5 µm, was composed of interconnected nanosheets with a highly porous structure. Without other modification, the as-prepared V2O5 electrode exhibited superior capacity. An initial discharge capacity of 330 mAh g−1 (at a current density of 100 mA g−1) could be delivered and a stable discharge capacity of 240 mAh g−1 after 50 cycles is maintained. The excellent performance was attributed to the hierarchical porous structure that could buffer against the local volume change and shorten the lithium-ions diffusion distance.  相似文献   

16.
LiFePO4 nanoparticles were grown on nano-graphite platelet (NGP) using a simple chemical route. The material was used as the cathode in Li-ion rechargeable batteries and exhibited excellent cyclability and rate capability because of the easy electron transport in it. The electrochemical stability of the electrode was improved by the two-dimensional conductive network of the NGP. The resulting electrodes delivered a specific capacity of about 150 mA h g?1 at a current rate of 135 mA g?1 (~0.8 C) after 100 cycles with no capacity fade. At elevated current rates, the electrodes exhibited capacities of more than 100 mA h g?1 at a current density of 2000 mA g?1 (~12 C) without further incorporation of conductivity agents or coatings.  相似文献   

17.
《Ceramics International》2016,42(15):16557-16562
A novel Li3V2(PO4)3 composite modified with Fe-doping followed by C+SiO2 hybrid layer coating (LVFP/C-Si) is successfully synthesized via an ultrasonic-assisted solid-state method, and characterized by XRD, XPS, TEM, galvanostatic charge/discharge measurements, CV and EIS. This LVFP/C-Si electrode shows a significantly improved electrochemical performance. It presents an initial discharge capacity as high as 170.8 mA h g−1 at 1 C, and even delivers an excellent initial capacity of 153.6 mA h g−1 with capacity retention of 82.3% after 100 cycles at 5 C. The results demonstrate that this novel modification with doping followed by hybrid layer coating is an ideal design to obtain both high capacity and long cycle performance for Li3V2(PO4)3 and other polyanion cathode materials in lithium ion batteries.  相似文献   

18.
《Ceramics International》2016,42(13):14818-14825
Poor rate capability and cycling performance are the major barriers for Li-rich layered cathode materials to be applied as the next generation cathode materials for lithium-ion batteries. In our work, Li1.2Co0.4Mn0.4O2 has been successfully synthesized via a self-combustion reaction (SCR) and a calcination procedure. Compared with the material produced by the solid state method (SSM), the one by SCR exhibits both better rate capability and cycling performance. Its initial discharge capacity is 166.01 mA h g−1 with the capacity retention of 85.98% after 50 cycles at a current density of 200 mA h g−1. Its remarkable performance is attributed to a thin carbon coating layer, which not only slows down the transformation rate of layered to spinel structure, but provides a good electronic pathway to increase the Li+ diffusion coefficient.  相似文献   

19.
Artificial graphite containing abundant in situ grown onion-like carbon hollow nanostructures (OCHNs) was prepared from nickel nanoparticles doped pitch and natural graphite flakes by hot-pressing sintering method. Galvanostatic discharge–charge tests indicate that the synthetic graphite with abundant OCHNs exhibits a high specific capacity of 460 mA h g−1 at 20 mA g−1 as well as an excellent rate capability, with a reversible capacity of 220 mA h g−1 at 1 A g−1. Besides the advantages of common graphite anode materials, these superiorities make synthetic graphite a very promising anode for high-performance lithium-ion batteries.  相似文献   

20.
Reduced graphene oxide (rGO) tethered with maghemite (γ-Fe2O3) was synthesized using a novel modified sol–gel process, where sodium dodecylbenzenesulfonate was introduced into the suspension to prevent the undesirable formation of an iron oxide 3D network. Thus, nearly monodispersed and homogeneously distributed γ-Fe2O3 magnetic nanoparticles could be obtained on surface of graphene sheets. The utilized thermal treatment process did not require a reducing agent for reduction of graphene oxide. The morphology and structure of the composites were investigated using various characterization techniques. As-prepared rGO/Fe2O3 composites were utilized as anodes for half lithium ion cells. The 40 wt.%-rGO/Fe2O3 composite exhibited high reversible capacity of 690 mA h g−1 at current density of 500 mA g−1 and good stability for over 100 cycles, in contrast with that of the pure-Fe2O3 nanoparticles which demonstrated rapid degradation to 224 mA h g−1 after 50 cycles. Furthermore, the composite showed good rate capability of 280 mA h g−1 at 10C (∼10,000 mA g−1). These characteristics could be mainly attributed to both the use of an effective binder, poly(acrylic acid) (PAA), and the specific hybrid structures that prevent agglomeration of nanoparticles and provide buffering spaces needed for volume changes of nanoparticles during insertion/extraction of Li ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号