首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CuO-ZnO混合纳米流体导热系数影响分析   总被引:1,自引:0,他引:1  
采用"两步法"制备了质量分数分别为1.0%,2.0%,3.0%,5.0%的CuO-ZnO混合纳米流体,制备过程中不添加分散剂。混合纳米流体选用乙二醇与去离子水作为基液,二者质量比(φv=EG:DW)分别为20:80,40:60,50:50,60:40和80:20,CuO与ZnO的质量比为温度范围从25℃到60℃,研究了不同比例基液、温度和质量分数对纳米流体导热系数的影响。结果表明:导热系数随混合纳米流体质量分数和温度的升高而增大。在温度为60℃时,质量分数为5.0%,基液比例φv为20:80的混合纳米流体导热系数增幅最大为26.1%。混合纳米流体的导热系数随乙二醇比例的增加而降低。实验还发现混合纳米流体导热系数与基液比例呈线性关系。  相似文献   

2.
为研究纳米流体稳定性并增强换热机理,在乙二醇/去离子水基液中,采用原液化学生长法制备了不同质量浓度(1%,2%,3%,4%和5%)的氧化硅-乙二醇/水纳米流体,通过Zeta电位测量和透射扫描电镜实验表征纳米流体的稳定性。实验测量并研究了温度和质量浓度对纳米流体的导热系数和粘度的影响。依据实测结果,利用格子玻尔兹曼方法对圆管内纳米流体的流动与换热特性进行数值模拟研究。结果表明:二氧化硅颗粒在基液中具有良好的稳定性;纳米流体的导热系数随温度和质量浓度的提高而增大;纳米流体的加入可以显著提高基液的对流换热系数,当质量浓度为5%时对流换热系数的提高幅度可达到25.5%。  相似文献   

3.
纳米流体稳定性及其导热性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了探究影响纳米流体稳定性和导热系数的因素,采用一步法和两步法分别制备了SiO_2-EG/DW(50∶50)纳米流体和SiO_2-EG纳米流体,探讨团聚体等效直径对纳米流体稳定性的影响。基于瞬态热线法的原理,测量一步法纳米流体的导热系数,分析温度和纳米颗粒质量分数对其导热系数的影响。结果表明:相比一步法制备的纳米流体,两步法纳米流体内团聚体的沉降速度增加了10~3倍,团聚体等效直径对纳米流体稳定性具有关键性的影响。纳米流体导热系数与温度和纳米颗粒质量分数呈线性正相关,纳米流体质量分数为15%时,80℃的样品导热系数相比40℃时提高了5.2%;60℃时,质量分数6%的纳米流体导热系数相比基液提高了6.4%;质量分数增加到15%时,导热系数相比基液提高了15.8%。  相似文献   

4.
十四烷是工业中最常用的液态烷烃之一,常被用于有机溶剂,有重要的应用价值。相比于纯烷烃,烷烃基纳米流体具有许多 优异的性质,特别是导热系数的增强。本文采用实验与理论模型对比的方法,对一些影响十四烷基纳米流体导热系数的因素进行研究,包括纳米颗粒种类、浓度、温度以及稳定性。结果表明,本文中纳米流体的有效导热系数随纳米颗粒体积分数的增加而增加,随温度的升高而下降;在各种纳米颗粒中,碳纳米管对导热的增强最为显著,且碳纳米管流体具有最好稳定性。  相似文献   

5.
周树光  翟玉玲  王江 《工业加热》2020,(4):23-26,31
采用两步法制备质量分数为1%的Cu/Al2O3-H2O/EG混合纳米流体。首先,研究其导热系数随温度和基液混合比的变化情况。然后,根据多项式回归理论建立Cu/Al2O3-H2O/EG混合纳米流体的导热系数预测模型。实验结果表明,纳米流体的稳定性随乙二醇含量的增大而增强,由于不同种类粒子间的分子吸附力不同,导致相同种类粒子容易结合形成团聚体,而Cu粒子与Al2O3粒子的团聚体则较少。导热系数随着温度的升高非线性升高,随基液中水含量的增大而下降。根据实验数据,拟合了导热系数与温度及基液混合比的多项式预测模型,回归系数R2达0. 998,精度较高可以很好地预测Cu/Al2O3-H2O/EG混合纳米流体的导热系数。该模型可以指导工程应用。  相似文献   

6.
综合考虑布朗运动、纳米液膜层、粒子簇、微尺寸效应等多种因素的影响,建立了石墨烯量子点(graphene quantum dot, GQDs)强化基液导热系数计算模型,使用Hot Disk热常数分析仪测量去离子水质量分数分别为0.002%、0.004%、0.006%、0.008%、0.010%的GQDs纳米流体的热导率进行验证,并且用预测模型对更高温度和更高质量分数GQDs纳米流体的导热系数进行了预测。研究表明:模型预测误差不超过2.5%,准确度较高,可以很好地预测不同质量分数GQDs纳米流体在不同温度下的导热系数;GQDs纳米流体由于布朗运动引起的类似对流换热的作用提升了导热系数;而GQDs的添加比例并非越大越好,添加比例过高反而会产生沉降效果,抑制导热系数的提升。  相似文献   

7.
通过实验方法研究了掺入TiO2纳米颗粒的相变悬浮液粘性和导热系数。研究表明,当纳米颗粒浓度不超过5%时,悬浮液仍可被视为牛顿流体,悬浮液的粘性随纳米颗粒浓度增加以非线性方式增加;当纳米质量颗粒浓度为5%时,相变悬浮液的粘性提高约23%。纳米颗粒的加入能够显著提高相变悬浮液的导热系数,当纳米颗粒质量浓度为5%时,相变悬浮液导热系数提高约7%。当纳米颗粒浓度较低时,纳米颗粒对相变悬浮液导热系数的提高幅度要高于对水的提高幅度。文中从不同方面分析了使用这种新型悬浮液作为传热工质的优势。  相似文献   

8.
采用平衡分子动力学方法研究了在超临界水中加入铜纳米颗粒后,系统温度、颗粒尺寸和质量分数等影响因素对纳米流体热导率的影响。结果表明:纳米流体的热导率随温度的升高而增大,纳米流体颗粒尺寸增加或者质量分数增加也会使整个系统的热导率增大。  相似文献   

9.
在Kumar模型基础上建立了适用于碳纳米管水基纳米流体的导热系数模型,通过实验数据(分散剂为SDS的纳米流体导热系数)进行了确认。利用所建模型,得到纳米颗粒体积分数为1.0×10-3%~2.0×10-2%时,模型值与实验值的最大偏差为11.04%。  相似文献   

10.
纳米流体强化导热系数机理初步分析   总被引:12,自引:1,他引:11       下载免费PDF全文
李强  宣益民 《热能动力工程》2002,17(6):568-571,584
从添加纳米粒子改变了液体结构和纳米粒子微运动两个方面,分析了纳米流体强化导热系数的机理,研究表明,相对于在液体中添加毫米或微米级固体粒子以增加导热系数而言,纳米流体强化导热系数的原因主要来自于纳米粒子的微运动,通过测量不同温度下纳米流体的导热系数,验证了纳米粒子微运动是纳米流体强化导热系数的主要因素。  相似文献   

11.
纳米流体强化活塞组-气缸套传热的数值模拟研究   总被引:1,自引:1,他引:0  
将活塞组-气缸套作为一个耦合体,利用数值模拟法研究了只在润滑油中与只在冷却水中加入纳米Cu颗粒两种情况下的强化传热效果,并与原机传热情况进行比较。研究结果表明:无论是以Cu-润滑油纳米流体还是以Cu-水纳米流体作为传热工质,都可以显著提高活塞组-气缸套的散热性能,且散热量随着纳米粒子浓度的增高而增大。对于活塞侧,Cu-润滑油纳米流体的改善效果强于Cu-水纳米流体,其中Cu体积分数为5%的Cu-润滑油纳米流体可使燃烧室中心点a、燃烧室喉口点b、顶面外边缘点c和第一环外侧上边缘点d的温度平均降低约28.4、21.7、22.8和27.7K;对于气缸套侧,Cu-水纳米流体强化换热效果更理想,Cu体积分数为5%的Cu-水纳米流体可使气缸套内侧上边缘点e的温度平均降低约10.4K。  相似文献   

12.
基于增广杨拉普拉斯方程的毛细弯液面薄膜蒸发区的传热传质模型,数值分析了过热度和纳米流体工质对毛细弯液面薄膜蒸发区热质迁移特性的影响。结果表明,过热度增大导致薄膜区范围减小,蒸发界面热流密度增大,薄膜区总换热量增大,但同时减弱了薄膜界面的稳定性。在传统流体工质中添加合适的纳米颗粒,纳米流体运动粘性系数随体积分率增大而减小,导热系数随体积分率增大而增大,影响其传热传质效果。较大体积分率的纳米流体,其薄膜厚度更小,薄膜区热流密度和蒸发质量流率更大,但同时蒸发界面的稳定性减弱。不同种类的纳米流体对毛细弯液蒸发界面的影响也较为明显,具有较低运动粘性系数和较高导热系数的纳米流体能够迁移更多的热量。  相似文献   

13.
以SiO2纳米颗粒分别分散在去离子水(DW)、乙二醇(EG)以及两者的混合液中得到的纳米流体为研究对象,研究了颗粒大小、温度、基液成分和体积分数等因素对纳米流体黏度的影响.结果表明:在相同基液的条件下,随着颗粒粒径减小,流体黏度增加;基液中EG体积分数越大,黏度受温度影响越明显;黏度随体积分数变化的规律与修正的K-D模型吻合较好,但当体积分数超过1%时,由于纳米颗粒团聚程度不同,使得以混合液(EG体积分数为50%)为基液的纳米流体的黏度远大于预测值.  相似文献   

14.
为了分析纳米流体受限式浸没射流冲击到凸台表面的换热效果,以及与水射流冲击光滑平板的换热情况对比,详细分析了纳米流体颗粒表面形状、纳米流体体积份额、纳米颗粒材料、射流Re数、喷嘴距换热表面的相对高度H/D对滞止点及整个热表面换热系数的影响。实验发现,表面形状对换热效果影响较大,射流冲击到凸台表面上滞止点换热系数h_0最小,但整个换热表面的局部换热系数h_x及平均换热系数h_(av)均为最大值,且换热系数随Re的增大而增大。纳米流体体积份额对换热效果的影响与喷射的相对高度H/D有关,当H/D为3时,h0及hav随纳米颗粒浓度的增大而增大;当H/D为5时,纳米流体体积份额φ为0.2%时的换热效果最好。  相似文献   

15.
以石蜡为相变材料基体、纳米金属铜、镍、铝、铁和锌为导热增强剂、油酸为分散剂,采用超声波震荡法制备纳米金属/石蜡复合相变蓄热材料体系。通过复合蓄热体系的步冷曲线分析,结果显示纳米铁为有效导热增强剂。对不同质量分数纳米铁/石蜡复合相变蓄热体系进行DSC和导热系数测试分析,结果表明:随着纳米铁质量分数的增加,复合材料的导热系数逐渐增大,相变潜热值逐渐降低,相变温度变化不大;纳米铁质量分数为0.1%时,复合材料的固态导热系数可增大2.8倍,相变潜热值下降1.1%。  相似文献   

16.
石蜡基碳纳米管复合相变材料的热物性研究   总被引:1,自引:0,他引:1  
以多壁碳纳米管为填料,制备了不同质量分数(1%~5%)的石蜡基纳米复合相变材料。采用差示扫描量热技术对所制备复合相变材料的相变特性进行了表征,其导热性能则通过瞬态热线法导热仪进行了测量。实验结果发现,虽然复合相变材料的相变温度几乎不变,但其相变焓则随碳纳米管的加载量的增加而近似线性下降。在质量分数为5%时,相变焓较纯石蜡下降了约15%。复合相变材料的导热系数大致随温度的升高而降低,而在30和50℃时分别由于固固和固液相变的作用,导热系数测量值出现了较大程度的突增。此外,导热系数随质量分数呈线性增长的趋势,在质量分数为5%时,最大的相对提升率接近40%,展现了良好的导热强化效果。  相似文献   

17.
通过实验研究确定制备稳定的微胶囊相变悬浮液必须采用的最优化表面活性剂添加量和悬浮液pH值。采用全功能稳定性分析仪TURBISCAN LAb研究表面活性剂十二烷基硫酸钠(SDS)添加量和悬浮液pH值对物理稳定性的影响。结果表明,当SDS质量分数太低,即颗粒表面改性不彻底时,稳定性较差;质量分数太高,容易形成表面活性剂胶束沉淀,并同时加速相变微胶囊颗粒上浮,破坏微胶囊相变悬浮液的稳定性,在选定的SDS质量分数范围内,最佳质量分数为0.2%~0.4%;pH值低于7时,溶液颗粒分散性提高不明显,并且出现加快分层现象;pH值过高时,溶液中OH-过多,压缩双电层厚度,减弱颗粒分散性,溶液稳定性提高受到抑制,在选定的pH值范围内,密胺树脂壳材的悬浮液最佳pH值为8。抑制悬浮液的分层和团聚现象对于其在传热和储热中的应用有重要意义,研究结果给制备稳定的悬浮液提供了可靠的依据。  相似文献   

18.
将具有导热系数高,与石蜡相容性较好特点的纳米铝粉加入到液体石蜡中,形成纳米铝粉/石蜡流体,利用膨胀石墨特有的网络状孔隙结构以及对石蜡的高吸附性能,制备出了纳米铝粉/石蜡/膨胀石墨复合相变材料,解决了纳米铝粉在液体石蜡中容易发生团聚和沉降的问题,并通过实验研究了其热物性能。研究结果表明:当石蜡与膨胀石墨质量百分比例为93/7,加入纳米铝粉的质量分数低于3%时,膨胀石墨可以稳定的吸附纳米流体,经反复循环蓄、放热,纳米流体不会出现泄漏问题,且对复合相变材料的体积和蓄热能力没有影响;膨胀石墨的网络状孔隙结构可以抑制纳米铝粉的团聚现象,但随着纳米铝粉含量的增加,纳米颗粒仍会发生团聚现象,复合相变材料的导热系数,蓄、放热速度均呈非线性增加。应控制纳米铝粉的加入量,当纳米铝粉质量分数为2%时,纳米铝粉颗粒未发生明显团聚现象,复合相变材料的热性能较好。  相似文献   

19.
研究了纳米流体在金属泡沫内的对流换热,建立了局部非热平衡数学模型,得到了金属泡沫内纳米流体速度、温度和纳米颗粒体积分数分布,分析了纳米流体和金属泡沫的强化换热效果。当使用纳米流体或在通道内填充金属泡沫时,截面速度和温度变得更均匀。随着纳米颗粒体积分数的增大,努塞尔数先增大然后又逐渐减小,即存在一个合适的体积分数能使换热效果达到最好;当金属泡沫孔隙率增加时努塞尔数也会减小,有利于换热的进行。纳米流体和金属泡沫对换热具有明显强化作用,但压降随纳米颗粒体积分数增大而急剧增大。此外,还考虑了布朗扩散和热泳扩散等因素的影响。  相似文献   

20.
在不添加任何分散剂和改变pH值的情况下,通过两步法将比表面积为150 m~2/g的气相SiO_2纳米颗粒制备成均匀稳定、透明度高、分散性能好的纳米流体。并对该功能性纳米流体进行了导热系数、黏度、表面张力和壁面接触角的测量。低体积分数下,功能性纳米流体较基液的导热系数几乎没有变化,但黏度却有较大改变。传统固液两相混合物黏度模型不再适用功能性纳米流体的计算,其主要原因是传统公式低估了分子间作用力对纳米流体黏度的影响。因此,建立了功能性纳米流体的黏度经验公式。由于纳米颗粒的存在提高了沸腾表面的粗糙度,从而使纳米流体的壁面湿润性能大大提高。实验结果表明,纳米流体的黏性和壁面接触角是沸腾换热发生骤变的关键。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号