共查询到20条相似文献,搜索用时 15 毫秒
1.
The involvement of epigenetic aberrations in the development and progression of tumors is now well established. However, most studies have focused on the epigenetic inactivation of tumor suppressor genes during tumorigenesis and little is known about the epigenetic activation of cancer-associated genes, except for the DNA hypomethylation of some genes. Recently, we reported that the overexpression of cancer-promoting genes in ovarian cancer is associated with the loss of repressive histone modifications. This discovery suggested that epigenetic derepression may contribute to ovarian tumorigenesis by constituting a possible mechanism for the overexpression of oncogenes or cancer-promoting genes in tumors. The emerging importance of epigenetic aberrations in tumor initiation and in the regulation of cancer-initiating cells, suggests that epigenetically regulated genes may be promising therapeutic targets and biomarkers. Given that the current challenges in ovarian cancer include the identification of biomarkers for early cancer detection and the discovery of novel therapeutic targets for patients with recurrent malignancies undergoing chemotherapy, understanding the epigenetic changes that occur in ovarian cancer is crucial. This review looks at epigenetic mechanisms involved in the regulation of cancer-associated genes, including the contribution of epigenetic derepression to the activation of cancer-associated genes in ovarian cancer. In addition, possible epigenetic therapies targeting epigenetically dysregulated genes are discussed. A better understanding of the epigenetic changes in ovarian cancer will contribute to the improvement of patient outcomes. 相似文献
2.
Stem cells play an essential role in embryonic development, cell differentiation and tissue regeneration. Tissue homeostasis in adults is maintained by adult stem cells resident in the niches of different tissues. As one kind of adult stem cell, epidermal stem cells have the potential to generate diversified types of progeny cells in the skin. Although its biology is still largely unclarified, epidermal stem cells are widely used in stem cell research and regenerative medicine given its easy accessibility and pluripotency. Despite the same genome, cells within an organism have different fates due to the epigenetic regulation of gene expression. In this review, we will briefly discuss the current understanding of epigenetic modulation in epidermal stem cells. 相似文献
3.
4.
Guillaume Velasco Damien Ulveling Sophie Rondeau Pauline Marzin Motoko Unoki Valrie Cormier-Daire Claire Francastel 《International journal of molecular sciences》2021,22(7)
DNA methylation (DNAme) profiling is used to establish specific biomarkers to improve the diagnosis of patients with inherited neurodevelopmental disorders and to guide mutation screening. In the specific case of mendelian disorders of the epigenetic machinery, it also provides the basis to infer mechanistic aspects with regard to DNAme determinants and interplay between histone and DNAme that apply to humans. Here, we present comparative methylomes from patients with mutations in the de novo DNA methyltransferases DNMT3A and DNMT3B, in their catalytic domain or their N-terminal parts involved in reading histone methylation, or in histone H3 lysine (K) methylases NSD1 or SETD2 (H3 K36) or KMT2D/MLL2 (H3 K4). We provide disease-specific DNAme signatures and document the distinct consequences of mutations in enzymes with very similar or intertwined functions, including at repeated sequences and imprinted loci. We found that KMT2D and SETD2 germline mutations have little impact on DNAme profiles. In contrast, the overlapping DNAme alterations downstream of NSD1 or DNMT3 mutations underlines functional links, more specifically between NSD1 and DNMT3B at heterochromatin regions or DNMT3A at regulatory elements. Together, these data indicate certain discrepancy with the mechanisms described in animal models or the existence of redundant or complementary functions unforeseen in humans. 相似文献
5.
Haijing Wu Ming Zhao Christopher Chang Qianjin Lu 《International journal of molecular sciences》2015,16(5):11013-11033
Systemic lupus erythematosus (SLE) is an autoimmune disease involving multiple organs and the presence of anti-nuclear antibodies. The pathogenesis of SLE has been intensively studied but remains far from clear. B and T lymphocyte abnormalities, dysregulation of apoptosis, defects in the clearance of apoptotic materials, and various genetic and epigenetic factors are attributed to the development of SLE. The latest research findings point to the association between abnormal epigenetic regulation and SLE, which has attracted considerable interest worldwide. It is the purpose of this review to present and discuss the relationship between aberrant epigenetic regulation and SLE, including DNA methylation, histone modifications and microRNAs in patients with SLE, the possible mechanisms of immune dysfunction caused by epigenetic changes, and to better understand the roles of aberrant epigenetic regulation in the initiation and development of SLE and to provide an insight into the related therapeutic options in SLE. 相似文献
6.
Atsushi Kurotani Tetsuya Sakurai 《International journal of molecular sciences》2015,16(8):19812-19835
Recent proteome analyses have reported that intrinsically disordered regions (IDRs) of proteins play important roles in biological processes. In higher plants whose genomes have been sequenced, the correlation between IDRs and post-translational modifications (PTMs) has been reported. The genomes of various eukaryotic algae as common ancestors of plants have also been sequenced. However, no analysis of the relationship to protein properties such as structure and PTMs in algae has been reported. Here, we describe correlations between IDR content and the number of PTM sites for phosphorylation, glycosylation, and ubiquitination, and between IDR content and regions rich in proline, glutamic acid, serine, and threonine (PEST) and transmembrane helices in the sequences of 20 algae proteomes. Phosphorylation, O-glycosylation, ubiquitination, and PEST preferentially occurred in disordered regions. In contrast, transmembrane helices were favored in ordered regions. N-glycosylation tended to occur in ordered regions in most of the studied algae; however, it correlated positively with disordered protein content in diatoms. Additionally, we observed that disordered protein content and the number of PTM sites were significantly increased in the species-specific protein clusters compared to common protein clusters among the algae. Moreover, there were specific relationships between IDRs and PTMs among the algae from different groups. 相似文献
7.
9.
Yuexuan Wang Yu Han Yuzhen Jin Qiang He Zhicheng Wang 《International journal of molecular sciences》2022,23(10)
Cancer is an important factor threatening human life and health; in recent years, its morbidity and mortality remain high and demosntrate an upward trend. It is of great significance to study its pathogenesis and targeted therapy. As the complex mechanisms of epigenetic modification has been increasingly discovered, they are more closely related to the occurrence and development of cancer. As a reversible response, epigenetic modification is of great significance for the improvement of classical therapeutic measures and the discovery of new therapeutic targets. It has become a research focusto explore the multi-level mechanisms of RNA, DNA, chromatin and proteins. As an important means of cancer treatment, radiotherapy has made great progress in technology, methods, means and targeted sensitization after years of rapid development, and even research on radiotherapy based on epigenetic modification is rampant. A series of epigenetic effects of radiation on DNA methylation, histone modification, chromosome remodeling, RNA modification and non-coding RNA during radiotherapy affects the therapeutic effects and prognosis. Starting from the epigenetic mechanism of tumorigenesis, this paper reviews the latest progress in the mechanism of interaction between epigenetic modification and cancer radiotherapy and briefly introduces the main types, mechanisms and applications of epigenetic modifiers used for radiotherapy sensitization in order to explore a more individual and dynamic approach of cancer treatment based on epigenetic mechanism. This study strives to make a modest contribution to the progress of human disease research. 相似文献
10.
11.
Edibe Avci Pouya Sarvari Rajkumar Savai Werner Seeger Soni S. Pullamsetti 《International journal of molecular sciences》2022,23(1)
Epigenetic responses due to environmental changes alter chromatin structure, which in turn modifies the phenotype, gene expression profile, and activity of each cell type that has a role in the pathophysiology of a disease. Pulmonary diseases are one of the major causes of death in the world, including lung cancer, idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), pulmonary hypertension (PH), lung tuberculosis, pulmonary embolism, and asthma. Several lines of evidence indicate that epigenetic modifications may be one of the main factors to explain the increasing incidence and prevalence of lung diseases including IPF and COPD. Interestingly, isolated fibroblasts and smooth muscle cells from patients with pulmonary diseases such as IPF and PH that were cultured ex vivo maintained the disease phenotype. The cells often show a hyper-proliferative, apoptosis-resistant phenotype with increased expression of extracellular matrix (ECM) and activated focal adhesions suggesting the presence of an epigenetically imprinted phenotype. Moreover, many abnormalities observed in molecular processes in IPF patients are shown to be epigenetically regulated, such as innate immunity, cellular senescence, and apoptotic cell death. DNA methylation, histone modification, and microRNA regulation constitute the most common epigenetic modification mechanisms. 相似文献
12.
Bun-Hee Lee Young-Min Park Seung-Hwan Lee Miseon Shim 《International journal of molecular sciences》2015,16(3):6251-6265
Background: Animal and clinical studies have demonstrated that the loudness dependence of auditory evoked potentials (LDAEP) is inversely related to central serotonergic activity, with a high LDAEP reflecting weak serotonergic neurotransmission and vice versa, though the findings in humans have been less consistent. In addition, a high pretreatment LDAEP appears to predict a favorable response to antidepressant treatments that augment the actions of serotonin. The aim of this study was to test whether the baseline LDAEP is correlated with response to long-term maintenance treatment in patients with major depressive disorder (MDD). Methods: Scalp N1, P2 and N1/P2 LDAEP and standardized low resolution brain electromagnetic tomography-localized N1, P2, and N1/P2 LDAEP were evaluated in 41 MDD patients before and after they received antidepressant treatment (escitalopram (n = 32, 10.0 ± 4.0 mg/day), sertraline (n = 7, 78.6 ± 26.7 mg/day), and paroxetine controlled-release formulation (n = 2, 18.8 ± 8.8 mg/day)) for more than 12 weeks. A treatment response was defined as a reduction in the Beck Depression Inventory (BDI) score of >50% between baseline and follow-up. Results: The responders had higher baseline scalp P2 and N1/P2 LDAEP than nonresponders (p = 0.017; p = 0.036). In addition, changes in total BDI score between baseline and follow-up were larger in subjects with a high baseline N1/P2 LDAEP than those with a low baseline N1/P2 LDAEP (p = 0.009). There were significantly more responders in the high-LDAEP group than in the low-LDAEP group (p = 0.041). Conclusions: The findings of this study reveal that a high baseline LDAEP is associated with a clinical response to long-term antidepressant treatment. 相似文献
13.
14.
Joong-Gook Kim Moon-Taek Park Kyu Heo Kwang-Mo Yang Joo Mi Yi 《International journal of molecular sciences》2013,14(7):15059-15073
Cancer is a disease that results from both genetic and epigenetic changes. In recent decades, a number of people have investigated the disparities in gene expression resulting from variable DNA methylation alteration and chromatin structure modification in response to the environment. Especially, colon cancer is a great model system for investigating the epigenetic mechanism for aberrant gene expression alteration. Ionizing radiation (IR) could affect a variety of processes within exposed cells and, in particular, cause changes in gene expression, disruption of cell cycle arrest, and apoptotic cell death. Even though there is growing evidence on the importance of epigenetics and biological processes induced by radiation exposure in various cancer types including colon cancer, specific epigenetic alterations induced by radiation at the molecular level are incompletely defined. This review focuses on discussing possible IR-mediated changes of DNA methylation and histone modification in cancer. 相似文献
15.
Emily Catherine Cheung Matthew Wyatt Kay Kathryn Jaques Schunke 《International journal of molecular sciences》2021,22(17)
Pediatric obstructive sleep apnea has significant negative effects on health and behavior in childhood including depression, failure to thrive, neurocognitive impairment, and behavioral issues. It is strongly associated with an increased risk for chronic adult disease such as obesity and diabetes, accelerated atherosclerosis, and endothelial dysfunction. Accumulating evidence suggests that adult-onset non-communicable diseases may originate from early life through a process by which an insult applied at a critical developmental window causes long-term effects on the structure or function of an organism. In recent years, there has been increased interest in the role of epigenetic mechanisms in the pathogenesis of adult disease susceptibility. Epigenetic mechanisms that influence adaptive variability include histone modifications, non-coding RNAs, and DNA methylation. This review will highlight what is currently known about the phenotypic associations of epigenetic modifications in pediatric obstructive sleep apnea and will emphasize the importance of epigenetic changes as both modulators of chronic disease and potential therapeutic targets. 相似文献
16.
Epimutations refer to mistakes in the setting or maintenance of epigenetic marks in the chromatin. They lead to mis-expression of genes and are often secondary to germline transmitted mutations. As such, they are the cause for a considerable number of genetically inherited conditions in humans. The correction of these types of epigenetic defects constitutes a good paradigm to probe the fundamental mechanisms underlying the development of these diseases, and the molecular basis for the establishment, maintenance and regulation of epigenetic modifications in general. Here, we review the data to date, which is limited to repetitive elements, that relates to the applications of key editing tools for addressing the epigenetic aspects of various epigenetically regulated diseases. For each approach we summarize the efforts conducted to date, highlight their contribution to a better understanding of the molecular basis of epigenetic mechanisms, describe the limitations of each approach and suggest perspectives for further exploration in this field. 相似文献
17.
Laura Orsolini Simone Pompili Silvia Tempia Valenta Virginio Salvi Umberto Volpe 《International journal of molecular sciences》2022,23(3)
The etiopathogenesis of depression is not entirely understood. Several studies have investigated the role of inflammation in major depressive disorder. The present work aims to review the literature on the association between C-Reactive Protein (CRP) and depression. A systematic review was performed for the topics of ‘CRP’ and ‘depression’ using the PubMed database from inception to December 2021. Fifty-six studies were identified and included in the review. Evidence suggested the presence of dysregulation in the inflammation system in individuals with depression. In most studies, higher blood CRP levels were associated with greater symptom severity, a specific pattern of depressive symptoms, and a worse response to treatment. Moreover, about one-third of depressed patients showed a low-grade inflammatory state, suggesting the presence of a different major depressive disorder (MDD) subgroup with a distinct etiopathogenesis, clinical course, treatment response, and prognosis, which could benefit from monitoring of CRP levels and might potentially respond to anti-inflammatory treatments. This work provides robust evidence about the potential role of CRP and its blood levels in depressive disorders. These findings can be relevant to developing new therapeutic strategies and better understanding if CRP may be considered a valuable biomarker for depression. 相似文献
18.
Kyu-Man Han Kwan Woo Choi Aram Kim Wooyoung Kang Youbin Kang Woo-Suk Tae Mi-Ryung Han Byung-Joo Ham 《International journal of molecular sciences》2022,23(10)
The Nod-like receptor pyrin containing 3 (NLRP3) inflammasome has been reported to be a convergent point linking the peripheral immune response induced by psychological stress and neuroinflammatory processes in the brain. We aimed to identify differences in the methylation profiles of the NLRP3 gene between major depressive disorder (MDD) patients and healthy controls (HCs). We also investigated the correlation of the methylation score of loci in NLRP3 with cortical thickness in the MDD group using magnetic resonance imaging (MRI) data. A total of 220 patients with MDD and 82 HCs were included in the study, and genome-wide DNA methylation profiling of the NLRP3 gene was performed. Among the total sample, 88 patients with MDD and 74 HCs underwent T1-weighted structural MRI and were included in the neuroimaging–methylation analysis. We identified five significant differentially methylated positions (DMPs) in NLRP3. In the MDD group, the methylation scores of cg18793688 and cg09418290 showed significant positive or negative correlations with cortical thickness in the occipital, parietal, temporal, and frontal regions, which showed significant differences in cortical thickness between the MDD and HC groups. Our findings suggest that NLRP3 DNA methylation may predispose to depression-related brain structural changes by increasing NLRP3 inflammasome-related neuroinflammatory processes in MDD. 相似文献
19.
Bruno Pinto Tiago Conde Inês Domingues M. Rosrio Domingues 《International journal of molecular sciences》2022,23(4)
Major depressive disorder (MDD), also called depression, is a serious disease that impairs the quality of life of patients and has a high incidence, affecting approximately 3.8% of the world population. Its diagnosis is very subjective and is not supported by measurable biomarkers mainly due to the lack of biochemical markers. Recently, disturbance of lipid profiling has been recognized in MDD, in animal models of MDD or in depressed patients, which may contribute to unravel the etiology of the disease and find putative new biomarkers, for a diagnosis or for monitoring the disease and therapeutics outcomes. In this review, we provide an overview of current knowledge of lipidomics analysis, both in animal models of MDD (at the brain and plasma level) and in humans (in plasma and serum). Furthermore, studies of lipidomics analyses after antidepressant treatment in rodents (in brain, plasma, and serum), in primates (in the brain) and in humans (in plasma) were reviewed and give evidence that antidepressants seem to counteract the modification seen in lipids in MDD, giving some evidence that certain altered lipid profiles could be useful MDD biomarkers for future precision medicine. 相似文献
20.
Plasma Phosphatidylethanolamine and Triacylglycerol Fatty Acid Concentrations are Altered in Major Depressive Disorder Patients with Seasonal Pattern
下载免费PDF全文

Yurika Otoki Marie Hennebelle Anthony J. Levitt Kiyotaka Nakagawa Walter Swardfager Ameer Y. Taha 《Lipids》2017,52(6):559-571
Disturbances in peripheral and brain lipid metabolism, including the omega-3 fatty acid docosahexaenoic acid (DHA), have been reported in major depressive disorder (MDD). However, these changes have yet to be confirmed in MDD with seasonal pattern (MDD-s), a subtype of recurrent MDD. The present exploratory study quantified plasma plasmalogen and diacyl-phospholipid species, and fatty acids within total phospholipids, cholesteryl esters, triacylglycerols and free fatty acids in non-medicated MDD-s participants (n = 9) during euthymia in summer or fall, and during depression in winter in order to screen for potential high sensitivity lipid biomarkers. Triacylglycerol alpha-linolenic acid concentration was significantly decreased, and myristoleic acid concentration was significantly increased, during winter depression compared to summer-fall euthymia. 1-stearyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine, a diacyl-phospholipid containing stearic acid and DHA, was significantly decreased in winter depression. Concentrations of cholesteryl ester oleic acid and several polyunsaturated fatty acids between summer/fall and winter increased in proportion to the increase in depressive symptoms. The observed changes in lipid metabolic pathways in winter-type MDD-s offer new promise for lipid biomarker development. 相似文献