首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
利用相转化纺丝法制备了NiO-YSZ中空纤维, 在其外表面负载YSZ膜1450℃共烧后形成YSZ/NiO-YSZ双层中空纤维。阳极孔结构通过芯液(N-甲基砒咯烷酮(NMP)+乙醇)中溶剂NMP的含量来控制。 当NMP含量从0、30wt%、50wt%、70wt%增加到100wt%时, 阳极的孔结构由指状孔/海绵孔/指状孔三明治结构逐渐成为贯通的指状孔结构, 电解质膜致密性、还原后的双层中空纤维的机械强度、阳极电导率逐渐减小, 而孔隙率则增加。多孔的阴极Ag涂敷于致密的电解质膜外表面构成微管SOFC。H2/空气微管SOFC的浓差极化随着指状孔长度的增加而减小, 当NMP含量为70wt%时, 输出性能最佳, 最大功率密度为662 mW/cm2 (800℃), 此时极化阻抗最小。  相似文献   

2.
采用离心沉降法及高温共烧结工艺在多孔NiO-Sm0.2Ce0.8O1.9(SDC)阳极上成功地制备了SDC/LSGM (La0.9Sr0.1Ga0.8Mg0.2O3-δ)/SDC电解质薄膜. 经共烧结制备了11μmSDC/15μmLSGM/13μmSDC三层复合电解质薄膜. 电池在800℃最大输出功率密度为0.92W/cm2, 但电池的开路电压0.89V低于理论电动势. 电池微结构和元素分析表明, 高温共烧结时Ni扩散到LSGM电解质薄膜中引起电子电导, 导致电池开路电压偏低. 阻抗谱测试表明, 引入SDC电解质作为隔离层后, 欧姆极化过程和电极极化过程共同影响电池的性能  相似文献   

3.
研究了Nd2NiO4+δ (NNO)-Ce0.8Gd0.2O2-δ (CGO)复合化合物在中温固体氧化物燃料电池的性能, 包括NNO-CGO复合阴极的烧结温度以及复合比例。采用流延法、丝网印刷法和高温烧结法相结合制备了尺寸为50 mm × 50 mm的平板式NiO-YSZ阳极支撑SOFC。单电池是由NiO-YSZ阳极支撑层、NiO-YSZ阳极功能层、YSZ电解质层, CGO阻挡层, NNO-CGO复合阴极层以及La0.6Sr0.4CoO3-δ (LSC)集流层共同组成。研究结果表明, 当70NNO-30CGO复合阴极烧结温度为1000℃, 单电池在800℃展现出最大功率密度385 mW/cm2 (0.7 V), 欧姆阻抗、极化阻抗和面积比电阻分别为0.31、0.266和0.576 Ω·cm2。电化学阻抗分析结果表明, 电荷转移阻抗是电池极化阻抗的主要来源。测试后电池截面的SEM观察结果显示电池各层之间均展现出良好的烧结结合。同时, 与前期研究结果比较可以发现, 具有相同复合阴极层的电池增加CGO阻挡层后功率密度下降, 欧姆阻抗增加, 但极化阻抗却降低。  相似文献   

4.
中空纤维陶瓷膜具有装填密度高, 传质阻力低, 使用寿命长等优点, 被广泛用于膜分离领域。高度非对称结构的中空纤维膜有利于同时实现高通量与高截留率, 本研究采用共挤出法制备双层中空纤维陶瓷复合膜, 内外层纺丝液分别掺杂平均粒径为1 μm和300 nm的α-Al2O3粉体。系统考察了内层纺丝液TiO2掺杂量、外层纺丝液Al2O3/聚醚砜(PESf)质量比和煅烧温度对膜的结构与性能的影响。结果表明, 在内层纺丝液TiO2掺杂量为2wt%, 外层纺丝液Al2O3/PESf质量比为5.60, 烧结温度为1350 ℃的最优条件下, 中空纤维膜断裂负荷为24 N、平均孔径为0.15 μm、去油率为97.5%。  相似文献   

5.
采用恒压电泳沉积方法在Ni-YSZ(氧化钇稳定的氧化锆)阳极基体上制备YSZ电解质膜,研究了悬浮体系YSZ含量、外加电压、沉积时间对电泳过程及YSZ膜层质量的影响,结果表明,YSZ含量为20 g/L,沉积电压为10 V,沉积时间5 min时,恒压电泳一次即可得到均匀致密的YSZ膜:膜层与基体结合紧密,厚度约为10 μm.  相似文献   

6.
采用泥浆喷涂工艺制备SOFC用阳极支撑YSZ电解质薄膜,首先采用模压成型工艺制窷iO-YSZ阳北极基底,通过优化泥浆制备工艺条件及喷涂条件,在NiO-YSZ阳极基底上喷涂均匀平整的YSZ电解质涂层,进一步采用共烧结工艺使YSZ电解质层致密.通过在基底中添加碳粉造孔剂,调节阳极基底的烧结收缩率与电解质层烧结收缩率一致,避免电解质涂层的开裂和变形.阳极基底中加入5wt%含量的碳粉,阳极与电解质层烧结收缩率一致.扫描电子显微镜观察电解质涂层表面形貌表明,球磨24h的泥浆喷涂的YSZ涂层较好,阳极基底与电解质膜在1400℃烧结2h,电解质膜层致密,表明通过泥浆喷涂工艺可以制备出致密电解质层.  相似文献   

7.
陶瓷中空纤维透氧膜的制备与性能   总被引:3,自引:0,他引:3  
应用相转化法制备了La0.6Sr0.4Co0.2Fe0.8O3-α(LSCF)氧离子-电子混合传导陶瓷中空纤维膜, 该陶瓷中空纤维膜具有由多孔层和致密层组成的非对称结构. 经 1300℃的4h烧结后, 可得到致密的LSCF陶瓷中空纤维膜. 烧结后, LSCF粒度变大而其钙钛矿型晶相结构没有发生变化. LSCF中空纤维膜的透氧速率大大高于一般管式膜的氧透量.  相似文献   

8.
采用干湿法纺丝技术制备Sr0.7Ba0.3Fe0.9Mo0.1O3-δ(SBFM)中空纤维支撑体, 以Nb2O5掺杂的SrCo0.8Fe0.2O3-δ (SCFNb)为膜材料, 采用旋转喷涂结合共烧结技术制备出担载型SCFNb/SBFM中空纤维氧渗透膜。借助于XRD、SEM、热膨胀分析、透氧及膜反应性能测试等手段, 分别对样品的晶相结构、膜微观结构、支撑体与膜层的烧结行为、膜的氧渗透通量及膜反应性能进行了研究。结果表明, 膜层与支撑体的晶相结构仍保持钙钛矿主体相。支撑体具有单一海绵孔/指状孔结构, 膜厚为5 μm且致密无缺陷, 膜层与支撑体结合良好。在900℃时, 氧渗透通量达到0.74 mL/(cm2·min)。850℃下甲烷部分氧化膜反应稳定操作超过200 h, 稳态下氧渗透通量为4.5 mL/(cm2·min)。研究表明, 担载型SCFNb/SBFM中空纤维氧渗透膜具有较高的氧渗透通量, 同时具有良好的膜反应稳定性。  相似文献   

9.
采用共流延成型、共烧结法制备了以Ni-YSZ阳极支撑的氧化钪稳定的氧化锆(SSZ)电解质膜。为提高电化学活性在支撑阳极与电解质膜之间引入了Ni-SSZ活性阳极。通过调整活性阳极的厚度和SSZ:NiO的质量比优化了阳极活性; 通过比较支撑阳极中添加不同造孔剂含量时的性能, 优化了支撑阳极的孔隙率。研究结果表明, 当活性层厚度为35 μm, 质量比为w(SSZ):w(NiO)=1:1, 支撑层造孔剂含量为10wt%时, 阳极活性最佳; 采用丝网印刷并烧结LSM-SSZ复合阴极后, 所得单电池在750℃的最高功率密度达到0.96 W/cm2, 比优化前本课题组前期报道的性能提高了2.3倍。  相似文献   

10.
采用相转化/高温烧结技术方法制备了多孔钇稳定氧化锆(YSZ)中空纤维膜, 中空纤维膜的外径1.92 mm, 壁厚为0.21 mm。SEM分析表明: 纤维膜为典型的三明治结构, 靠近膜内外表面为指状孔, 中间区域为海绵状层。采用阿基米德法测得其孔隙率为54%。用泡点法测得其平均孔径为0.56 μm。通过表面接枝氟硅烷将其亲水性的表面改变为疏水性。真空式膜蒸馏实验表明YSZ中空纤维膜具有优异的盐水淡化性能。当膜的外侧与温度为80℃、浓度为4wt%的循环盐水接触, 膜的内侧用真空泵抽至4×103 Pa时, 膜的水渗透通量高达48.3 L/(m2•h), 脱盐率大于99.7%。  相似文献   

11.
采用相转化流延一步制备了NiO-Zr0.84Y0.16O2-δ (YSZ)阳极支撑层和功能层, 前者厚度为~700 μm, 含有沿厚度方向定向排列的开放直孔, 后者厚度为~60 μm。采用浆料涂膜法和高温共烧在阳极上制备厚度为15 μm的YSZ电解质薄膜, 丝网印刷制备YSZ-La0.84Sr0.16MnO3-δ (LSM)(质量比50:50)阴极。所制备的单电池显示出较高的电输出性能。以H2-3%H2O为燃料和环境空气为氧化剂, 800 ℃时电池的峰功率密度达到891 mW/cm2, 电池即使在高电流密度测试条件下也未出现明显的浓差极化, 这是由于其阳极具有开放直孔结构, 气相输运阻力小。  相似文献   

12.
合成了新型固体氧化物燃料电池(SOFC)阳极材料La0.75Sr0.25Mn0.5Cr0.5-xCuxO3-δ (LSMCr0.5-xCux, x=0、0.05、0.10、0.20)。通过X射线衍射(XRD)表征其物相结构和与电解质的化学相容性, 通过透射电子显微镜(TEM)表征其微观形貌。用直流四探针法测试了材料的电导率; 交流阻抗法表征了材料的阳极阻抗特性。结果表明: LSMCr0.5-xCux材料均为菱方钙钛矿晶相, Cu的掺入导致晶胞体积和粉体粒径增大。x≤0.10时, 阳极粉体与YSZ在1200℃烧结3 h无第三相生成, 具有良好的化学相容性。LSMCr0.5-xCux 在空气和5%H2-Ar气氛下的电导率均随x的增加而增大; 在湿润的5%H2-Ar气氛下的阳极极化面电阻(ASR)均低于未掺杂的LSCM, x =0.05时ASR最低, 900℃时仅有0.38 Ω·cm2。  相似文献   

13.
与传统的全陶瓷结构的固体氧化物燃料电池(Solid Oxide Fuel Cell, SOFC)相比, 金属支撑固体氧化物燃料电池(MS-SOFCs)具有材料成本低, 结构稳定性高, 抗热震性高等优点。为了促进SOFC的商业化, 采用流延-烧结-浸渗工艺制备了Ce0.8Sm0.2O2-δ(SDC)-430L阳极/Zr0.88Sc0.22Ce0.01O2.12(SSZ)电解质/SDC-430L阴极构型的全对称结构金属支撑固体氧化物燃料电池(MS-SOFC)。电池以湿氢气为燃料、空气为氧化气, 在600、650和700℃时的最大功率密度为220、250和280 mW/cm2。电化学阻抗谱的测试表明, 电池的性能由SDC-430L电极的极化阻抗所主导, 在700、650和600℃时, 电池欧姆阻抗分别为0.16、0.21和0.29 Ω•cm2, 极化阻抗分别为0.67、0.90 和1.22 Ω•cm2。与阳极相比, 阴极的极化阻抗更为显著。对称SDC-430L电池在3%H2O-97%H2和空气气氛中测得的极化阻抗分别为0.23和1.92 Ω•cm2 (650℃)。进一步优化电池结构(例如采用更加精细的430L骨架)和催化材料(例如含有Ag、Pt的复合材料)将有助于提升该MS-SOFC的电化学性能。  相似文献   

14.
采用柠檬酸-硝酸盐自蔓延燃烧法分别合成了Pr0.6Sr0.4Co0.2Fe0.8O3-δ(PSCF)和Gd0.2Ce0.8O2-δ(GDC)粉体, 高温固相法合成La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM)电解质粉体。以LSGM为电解质, PSCF同时作为阴极和阳极, GDC作为功能层材料, 构建了对称固体氧化物燃料电池PSCF│GDC│LSGM│GDC│PSCF。利用X射线衍射法研究材料的成相以及相互间的化学稳定性, 交流阻抗法记录界面极化行为, 用扫描电子显微镜观察电池的断面微结构, 用自组装的测试系统评价电池输出性能。结果表明, 合成的PSCF粉体呈立方钙钛矿结构, 具有良好的氧化-还原可逆性。使用GDC功能层明显改善了氢气环境下PSCF与LSGM材料间的化学相容性以及电池的输出性能, 800℃时, 电极│电解质界面极化电阻从6.892 Ω·cm2下降到0.314 Ω·cm2; 以加湿H2(含体积分数3%的水蒸气)为燃料气, 空气为氧化气时, 单电池输出功率密度由269 mW/cm2增大至463 mW/cm2。研究结果显示, PSCF是对称固体氧化物燃料电池良好的候选电极材料, GDC功能层对改善电池长期稳定性能具有潜在的应用价值。  相似文献   

15.
La0.2Sr0.8TiO3 (LST) 对于直接甲烷为燃料的固体氧化物燃料电池而言是一种具有潜力的阳极材料。本研究采用传统的固相反应法合成了LST粉体, 按照质量比5: 5混合LST和Sc0.1Zr0.9O2(SSZ)粉体, 以此复合阳极材料制备对称电池并测试其极化阻抗。在氢气气氛中700、750和800℃时阳极极化阻抗分别为5.3、3.0以及2.0 ?·cm2。鉴于LST的电导率较低, 我们通过浸渍工艺加入10wt%的Ni来提高复合阳极的电导率和催化活性, 复合阳极测得的极化阻抗明显减小。以10wt%Ni-LST-SSZ作为阳极材料制备出的阴极支撑型单电池, 其在氢气和甲烷中的最大功率密度分别可达到225 mW/cm2和175 mW/cm2, 并且在甲烷燃料中放电时表现出了较好的稳定性。  相似文献   

16.
研究了一种热稳定性好的中温固体氧化物燃料电池密封玻璃. 研究表明, 此密封玻璃的热膨胀系数(室温~631℃)为9.8×10-6/K, 与8YSZ电解质的热膨胀系数10.0×10-6/K(室温~631℃)接近, 并且在700℃热处理300h后, 该密封玻璃的热膨胀系数几乎没有变化. 粘度实验表明, 玻璃在700℃下具有足够的刚性, 适合于运行温度在700℃左右SOFC的密封. 化学相容性的研究显示, 在700℃下与8YSZ反应300h后没有发现显著的界面反应.  相似文献   

17.
In this work, a multi-layer anode supported solid oxide fuel cell (SOFC) is designed and successfully prepared through sequential tape casting and co-firing. The single cell is consisted of NiO-3YSZ (3YSZ: 3 mol.% yttria doped zirconia) anode support, NiO-8YSZ (8YSZ: 8 mol.% yttria stabilized zirconia) anode functional layer, dense 8YSZ electrolyte layer, and porous 3YSZ cathode scaffold layer with infiltrated La0.6Sr0.4Co0.2Fe0.8O3-δ cathode. The clear interfaces and good contacts between each layer, without element inter-diffusion being observed, suggest that this sequential tape casting and co-firing is a feasible and successful route for anode supported single cell fabrication. This cell exhibits remarkable high open circuit voltage of 1.097 V at 800°C under room temperature humidified hydrogen, with highly dense and gastight electrolyte layer. It provides a power density of 360 mW/cm2 under operation voltage of 0.75 V at 800°C and a stable operation of ~110 h at 750°C under current density of ?300 mA/cm2. Furthermore, this cell also presents encouraging electrochemical responses under various anode hydrogen partial pressures and maintains high power output at low fuel concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号