首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
利用标记分水岭法实现夏克-哈特曼波前传感器质心探测   总被引:1,自引:0,他引:1  
由于光斑质心探测精度直接影响夏克-哈特曼波前传感器的波前探测精度,本文提出基于标记分水岭法来确定阵列光斑质心探测窗口。首先,对采集到的夏克-哈特曼阵列光斑图像进行平滑并求出其梯度图像;然后,利用大津(OTSU)阈值法在求出的梯度图像上进行目标标记,最后在标记过的梯度图像上进行分水岭分割,确定出每个光斑的探测窗口。由于该方法确定的质心探测窗口是对光斑实际大小进行匹配,故有效地抑制了噪声对质心探测的影响。实验结果表明:利用该方法确定光斑探测窗口所计算的质心精确度和稳定性均比传统的在子透镜窗口中计算光斑质心的方法要高。统计多幅图像计算得到的窗口质心标准差的平均值为0.010 9,比传统法计算出的平均值0.073 4提高了6倍,满足哈特曼波前传感器对光斑质心计算稳定性和精确度的要求。  相似文献   

2.
目前,对管道内腔为自由曲面的截面轮廓进行高精度测量是行业难题。拟将多个不同测量范围的激光位移传感器放置于管道内腔中,采用旋转的方式对内腔进行测量,将得到的测量数据进行归一化处理后获得被测管道内腔截面轮廓形状。分析测量过程中激光光斑的变化情况,针对光斑图像的多峰、散斑、平顶与形状变化等现象,提出了一种基于传统灰度重心法进行粗定位的距离倒数加权多项式插值亚像素光斑中心定位方法。采用中值滤波对光斑图像进行预处理,通过自适应阈值分割法从环境背景光强中分离出光斑中心定位区域。通过MATLAB仿真与灰度重心法、加权灰度重心法与高斯拟合法传统光斑中心定位方法相比,结果表明,光斑中心定位精度达到0.01 pixel,在激光光斑中心定位精度和稳定性方面有一定的改善,明显优于传统的光斑中心定位算法。  相似文献   

3.
基于能量累加的空间目标星像质心定位   总被引:2,自引:2,他引:0  
孙瑾秋  周军  张臻  张永鹏 《光学精密工程》2011,19(12):3043-3048
研究了CCD观测图像的亚像素级高精度质心定位方法以提高目标星像的天文定位精度.分析了影响定位精度的主要因素,如图像噪声、离散化采样误差及定位窗口选择等,结合CCD弥散斑的成像特性,提出了一种基于能量累加的空间目标星像质心定位方法.该方法使用插值方式降低离散采样点和实际感光区域光线照度的不一致性;利用弥散斑能量累加自适应...  相似文献   

4.
针对桥梁结构健康安全运行自动化检测的需求,利用激光基准的嵌入式桥梁挠度图像式检测原理,设计了透射式靶标的光斑中心检测算法。针对透射式激光靶标光斑中心的高精度实时检测,提出了一套光斑中心坐标的快速读取方法。该方法首先对第一帧光斑图像采用金字塔模型获取其ROI区域;然后,采用基于序列图像块搜索方法快速获取后续图像的光斑图像的ROI区域;最后,在ROI区域内检测光斑的边缘,通过椭圆拟合的方法获取光斑图像的亚像素中心。该算法从应用层面解决了高精度和实时性的矛盾,保证了测量精度和效率。经实测发现:该算法挠度值的测量误差小于0.1像素,数据更新时间小于200 ms,同时满足了高精度和实时性的要求。  相似文献   

5.
提出了一种暗弱空间目标的高精度定位方法,以进一步提高该类空间目标的定位精度。研究了星像质心计算和星图匹配以及光电望远镜静态指向修正模型和天文定位等算法。首先,深入分析了星像质心计算和三角形匹配算法。然后,采用Tycho-2星表和基本参数修正模型,修正光电望远镜系统静态指向误差。最后,针对暗弱空间目标定位精度低,对传统天文定位方法进行了改进,提出了"暗弱空间目标高精度定位方法",实现了暗弱空间目标高精度定位。实验结果表明:提出的暗弱空间目标高精度定位方法的测量精度优于4″,基本满足光电观测系统进行暗弱空间目标测量时对精度和稳定性的要求。  相似文献   

6.
由于施工现场杂光的干扰,盾构导向激光光斑无法被准确识别。针对这一问题,利用导向激光的脉冲特性,提出了一种基于数字图像处理的抗杂光算法。首先,对工业相机曝光时间与激光脉冲周期之间的关系进行分析,通过调节工业相机曝光时间,可以有效地采集到导向激光产生脉冲的前后两帧图像;之后,差分两帧图像以获得目标光斑;最后,利用合适的结构元素腐蚀图像中的杂光残影,彻底地消除杂光带来的不良影响。实验结果表明:在激光标靶适用距离内,利用本文抗杂光算法,导向激光光斑的识别准确率优于93.75%;通过与其他抗杂光算法进行对比,在近中远距离下,识别准确率分别提升了21.87%、23.13%、26.87%,能够满足盾构导向施工要求,具有良好的应用前景。  相似文献   

7.
基于传统的夏克-哈特曼波前传感技术,针对实验室现阶段所拥有的合成孔径望远镜系统设计了一套共焦检测系统,用于对合成孔径系统的拼接主镜进行倾斜量误差检测。由于受实验平台振动和实验环境气流扰动等因素的影响,导致检测系统的夏克-哈特曼光斑质心阵列做无规则的抖动,检测系统难以实现高精度共焦。针对该问题提出采用连续帧频数据采样叠加滤波处理的方法来克服实验环境因素的影响;将采集的连续帧频数据逐帧处理,相互叠加,分析光斑质心分布规律,通过构建光斑分布图样最小外接矩形获取光斑质心位置,从而有效的提高了共焦检测系统的准确度。实验表明中心镜沿x与y方向的倾斜量误差数据的标准差分别从0.0297与0.0092降到了6.0×10-5与5.1614×10-4。最终光斑质心数据的稳定性得到了不止一个量级的提升,良好的克服了因实验环境因素导致检测系统精度损失的问题,同时也验证了共焦检测系统方案的可行性。  相似文献   

8.
在由激光位移传感器组成的测量系统中,激光光束的方向是一个关键参数。方位角和俯仰角对于一条激光光束是最为重要的两个参数。本文中提出一种基于单目视觉的激光光束方向测量方法。首先,将CCD相机放置于基础平面上方,保持相机光轴与基础平面接近于垂直状态,并利用误差为10μm的圆孔型标定板建立单目定位模型。然后将激光光束发生装置放置在基础平面上并保持位置固定,同时在基础平面上放置特制靶块,使激光光束可以投射到靶块斜面上并形成一个激光光斑。在基础平面上方放置的CCD相机可以清晰的采集到激光光斑、靶块斜面的图像,应用相关算法提取出光斑质心的二维图像坐标。沿激光光束方向以相等间距移动靶块,通过CCD相机采集每移动一次靶块在当前位置下的光斑、靶块图像。利用相关的转换公式,结合靶块本身固有参数,将光斑质心图像二维坐标转换为基础平面下的空间三维坐标。由于靶块的移动,会得到靶块不同位置下激光光斑质心的三维坐标,将这些三维坐标拟合成空间直线表征待测激光光束。拟合直线得俯仰角即为待测激光光束的俯仰角。实验中,应用高精度仪器对靶块参数进行测定,并使用高精度标定板标定相机内外参数建立相应的定位模型。测量精度主要通过单目视觉定位精度、光斑重心提取精度来保证。结果显示,待测光束的俯角最大误差达到0.02°,光束间夹角的最大误差为0.04°。  相似文献   

9.
在由激光位移传感器组成的测量系统中,激光光束的方向是一个关键参数.方位角和俯仰角对于一条激光光束是最为重要的两个参数.本文中提出一种基于单目视觉的激光光束方向测量方法.首先,将CCD相机放置于基础平面上方,保持相机光轴与基础平面接近于垂直状态,并利用误差为10μm的圆孔型标定板建立单目定位模型.然后将激光光束发生装置放置在基础平面上并保持位置固定,同时在基础平面上放置特制靶块,使激光光束可以投射到靶块斜面上并形成一个激光光斑.在基础平面上方放置的CCD相机可以清晰的采集到激光光斑、靶块斜面的图像,应用相关算法提取出光斑质心的二维图像坐标.沿激光光束方向以相等间距移动靶块,通过CCD相机采集每移动一次靶块在当前位置下的光斑、靶块图像.利用相关的转换公式,结合靶块本身固有参数,将光斑质心图像二维坐标转换为基础平面下的空间三维坐标.由于靶块的移动,会得到靶块不同位置下激光光斑质心的三维坐标,将这些三维坐标拟合成空间直线表征待测激光光束.拟合直线得俯仰角即为待测激光光束的俯仰角.实验中,应用高精度仪器对靶块参数进行测定,并使用高精度标定板标定相机内外参数建立相应的定位模型.测量精度主要通过单目视觉定位精度、光斑重心提取精度来保证.结果显示,待测光束的俯角最大误差达到0.02°,光束间夹角的最大误差为0.04°.  相似文献   

10.
针对激光共焦扫描显微镜的往复式逐行扫描成像方式带来的帧图像数据分割难的问题,在分析系统扫描方式、振镜的实际运动方式与理论运动方式差异的基础上,利用相邻两帧图像相似性大的特点,提出了一套完整的高帧速重构算法。该算法通过连续帧特征区域差分的方式实现了一维信号序列的自适应分割,即实现了对一维信号序列进行动态排列及分割成二维阵列图像数据,从而重构出多帧高精度图像。实验表明,该算法的成像误差低于1.6%,适用于成像速度高达300帧/s的激光共焦扫描显微成像。  相似文献   

11.
结合装配位姿视觉检测系统的研发,为提高红外LED靶点质心亚像素定位精度与稳定性,对红外LED靶点图像的灰度分布模型进行了研究,提出了一种基于自由曲面拟合的质心定位算法以获取靶点图像的亚像素中心。根据靶点图像的灰度分布,该算法通过双三次样条插值生成靶点灰度分布曲面,利用拟牛顿法求取曲面顶点即靶点图像中心的亚像素坐标。实测实验显示该算法在图像噪声水平较低的高精度测量环境中,当靶点距离摄像机约5m和12m时,与高斯曲面拟合法和加权灰度重心法相比,该算法都能更准确地描述靶点的灰度分布,生成的灰度曲面更加接近靶点图像的真实分布,在高精度测量环境中具有更高的测量精度和稳定性。  相似文献   

12.
基于卡尔曼滤波的焊缝检测技术研究   总被引:4,自引:1,他引:4  
提出一种基于卡尔曼滤波技术的电弧焊焊缝检测新方法。利用视觉传感器获取弧焊区熔池图像,并抽取图像质心作为描述焊缝位置的特征矢量,建立图像质心状态方程和测量方程。在有色噪声模型的基础上,应用卡尔曼滤波对图像质心位置和质心位移进行状态估计,得到最小均方差条件下的焊缝位置最佳预测值,从而减小过程噪声和测量噪声引起的焊缝位置测量偏差,实现弧焊过程中焊缝位置的精确检测。计算机仿真及实际焊接试验结果验证了该方法的有效性。  相似文献   

13.
为了获得高精度、高更新率的抗噪声性能,对星敏感器星像提取环节进行了研究。首先,分析星图中星像灰度的分布特点,建立了判断某个像素是否与峰值像素归属同一星像的标准。然后,介绍了像元阵列分块方法和背景预测法。最后,结合星像的特点提出了以峰值点为种子点的区域生长准则。仿真实验结果表明,在不加噪声的情况下,提取出的星像与参考星图完全一致,用质心法得到的亚像素定位精度为0.028 2。在添加均值为20、标准差高达2.5的强高斯灰度噪声的情况下,提取率仍能达到86.11%,质心精度则下降到0.219 6pixel。均匀性很差,信噪比低于4.9dB的实拍星图实验结果也证明该方法有很强的星像提取能力和准确性,能够满足强噪声弱星像质心提取的强抗干扰能力的要求。  相似文献   

14.
星点质心亚像元定位的高精度误差补偿法   总被引:8,自引:3,他引:5  
杨君  张涛  宋靖雁  梁斌 《光学精密工程》2010,18(4):1002-1010
在CCD星敏感器设计过程中,星点坐标的提取精度不仅影响星图识别的正确性,也直接影响星敏感器的最终姿态输出精度。本文通过分析传统质心法亚像元提取算法误差模型,证明该模型存在系统误差和随机误差。针对系统误差,提出了用最小二乘拟合法来估计质心位置和系统误差大小的对应关系,利用这个关系对系统误差进行补偿;针对随机误差,提出用边缘阈值法和星图整体相消法来消除。本文还分析了CCD成像数学模型,星光成像的能量分布近似服从二维高斯分布,星点高斯分布弥散半径不同,用于误差补偿的曲线方程也不一样,根据不同的高斯弥散半径,设计了误差补偿模板,用于补偿质心法的系统误差。实验表明,采用误差补偿模板,可以将质心法精度从1/20pixel提高到1/200pix-el,满足了星敏感器高精度星点质心提取的要求。  相似文献   

15.
为实现大尺寸机械零件的高精度视觉测量,研究基于序列局部图像的视觉测量方法。首先分析机械零件图像边缘的过渡分布特征,提出边缘像素补偿法,消除实际边缘不能精确定位对测量精度的影响。然后以直线边缘距离测量为原型,提出基于序列局部图像尺寸特征的测量方法:对零件进行微小区域成像,生成在空间上连续的序列局部图像;应用相关系数法和双线性插值法获得相邻序列图像的亚像素级尺寸特征线,从而得到各局部图像的尺寸特征;对这些尺寸进行求和与补偿,得到零件的总体尺寸。实验表明,对常规尺寸零件的单幅图像运用边缘像素补偿法,相对测量误差在0.008%以内;对大尺寸零件应用序列图像测量法,相对测量误差在0.01%以内,具有误差积累小的优点,可用于机械零件的精密自动化测量。  相似文献   

16.
计算机视觉检测技术在测绘、工业、军事、导航等领域已得到广泛的应用。而标定是视觉检测的关键技术之一。本文介绍一种用激光束对系统进行标定的新方法,即将激光器发出的平行光束投射到被测物表面上的光斑作为标定物,通过采集光斑图像并对图像进行预处理,包括噪声处理、图像分割技术等得到光斑图像,最后计算出图像象素与实际尺寸的对应关系。该方法能够在不便于或者不能使用常规标准件法的环境下进行快速标定。试验结果验证了该方法在一定精度下的稳定性和可用性。  相似文献   

17.
针对大型激光装置使用纹影法无法实现旁瓣光束弱信号区域光强分布精确测量的问题,提出了基于旁瓣光束衍射反演的纹影法强激光远场焦斑测量方法.采用逆向推演间接测量的研究方法,沿光路传播逆方向推导,以旁瓣光束衍射光强图像和相位图像作为输入,通过计算获得未遮挡前旁瓣光束远场焦斑分布.相比传统基于纹影的远场焦斑测量方法,本文的主要改...  相似文献   

18.
大尺寸机械零件的机器视觉高精度测量方法   总被引:1,自引:0,他引:1  
为实现大尺寸机械零件的高精度视觉测量,研究了基于序列局部图像尺寸特征的测量方法,提出了基于纹理特征的序列局部图像校准技术以解决测量过程中相面旋转引起的局部图像尺寸方向变动问题;提出了图像边缘补偿测量技术以消除实际边缘不能精确定位而对测量精度的影响;论述了基于序列局部图像尺寸特征测量方法的算法实现过程。实验表明,对大尺寸零件应用序列图像测量法进行测量,其相对测量误差在0.012%以内,基本满足机械零件二维尺寸精密自动化测量要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号