首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This work presents the novel nature of 2,4-hexadienoic acid potassium salt (potassium sorbate (KCH3CHCHCHCHCO2)) as an effective copper aqueous corrosion inhibitor. The influence of pH and potassium sorbate concentration on copper corrosion in aerated sulfate and chloride solutions is reported. Degree of copper protection was found to increase with an increase in potassium sorbate concentration; an optimum concentration of this inhibitor in sulfate solutions was found to be 10 g/L. Copper is highly resistant to corrosion attacks by chloride ions in the presence of potassium sorbate. X-ray photoelectron spectroscopy (XPS) studies suggest that copper protection is achieved via the formation of a mixed layer of cuprous oxide, cupric hydroxide and copper(II)-sorbate at the metal surface.  相似文献   

2.
Copper was deposited onto rotating Si substrates by galvanic displacement in 6.0 M NH4F to determine the effects of Cu complex formation on deposition rates. Deposition rates decreased with increasing rotation speed, indicating that Cu(I) intermediates, stabilized by NH3, diffuse away from the Cu surface before they reduce to Cu(0). UV-visible spectra of contacting solutions and direct measurements of mass changes resulting from Cu deposition and Si removal confirmed this proposal. These findings contrast those reported previously for deposition from HF solutions, in which Cu(I) species are unstable and reduce rapidly to Cu(0). These data and mixed-potential theory were used to develop a reaction-transport model that accurately describes the effects of mass transfer and electrochemical reaction rates on Cu deposition dynamics and open-circuit potential (OCP) values. The effects of ascorbic acid and tartrate additives on film properties and formation rates were also examined. Cu reduction kinetics decreased significantly when ascorbic acid (0.01 M) was present. Adhesion of Cu films was improved when ascorbic acid was used, but internal stresses caused films to distort when their thicknesses exceeded 100 nm. Adding potassium sodium tartrate to solutions containing ascorbic acid decreased film stresses and led to robust films with excellent adhesion.  相似文献   

3.
This study reports on the effects of potassium sorbate (K[CH3(CH)4CO2]) on copper chemical mechanical planarization (CMP) performance and demonstrates how the performance can be controlled by the inhibitor concentration in the slurry. The study is a continuation of a recent report on the copper polishing mechanism in H2O2/glycine-based slurries using sorbate as an inhibitor. CMP performance with respect to the inhibitor concentration in the slurry is evaluated in terms of surface roughness, polishing uniformity and dishing values. CMP results obtained from blanket wafers show that an increased sorbate concentration provides lower roughness values. CMP data obtained from patterned wafers shows that an increased sorbate concentration provides better polishing uniformity and lower dishing values for copper lines. The high solubility of sorbate in water (up to 9 M) is a major advantage for CMP processing.  相似文献   

4.
Copper electrochemical deposition on titanium with a ruthenium seed layer was investigated. The chemicals for the acid-bath ruthenium electrochemical deposition were ruthenium(III) chloride hydrate (RuCl3·3H2O), hydrochloric acid (HCl), sulfamic acid (NH2SO3H), and polyethylene glycol. The chemicals for the acid-bath copper electrochemical depositions were copper(II) sulfate hydrate (CuSO4·5H2O), sulfuric acid (H2SO4), and polyethylene glycol. Results were analyzed by field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Rutherford backscattering spectrometry (RBS). Ruthenium thin film of ∼30 nm thickness, with equiaxial grains <10 nm, was deposited, on a blanket Ti with a root mean square roughness of 8.3 nm, at 2 V for 90 s. XPS and RBS analyses showed the presence of metallic Ru. The Ti substrate was found stable with respect to ECD of Ru but the Ru/Ti bilayer was not found stable in the Cu acid bath, resulting in the diffusion of Ti into Ru film. The depth profiling studies indicates that Ru film thickness ca. 1.4 nm and deposition time of 10 s can act as a good seed layer.  相似文献   

5.
Copper additions to aluminum decrease susceptibility to pit initiation provided that Cu is retained in solid solution. This can be observed as an increase in pitting potential with increasing Cu content in an alloy. To further understand this effect, metastable pitting of high purity Al, Al-0.2Cu and Al-2.0Cu exposed to 0.1 M NaCl solutions has been examined in detail. Results show that 0.2 wt.% Cu additions decrease the metastable pit initiation rate by more than an order of magnitude and slow the pit growth rate mainly by decreasing the peak pit current attained. In an Al-2.0 wt.% alloy, metastable pitting events were too rare for rigorous study. Repassivation of metastable pits occurs by a two-stage process in Al-0.2 wt.% Cu alloy. The repassivation rate during the first stage is identical to that of high purity Al and appears to be completely unaffected by Cu in the alloy or in the pit solution. In the second stage, repassivation is slow, but is not believed to affect ultimate pit stability. Overall, Cu additions decrease the probability of stable pit formation by decreasing metastable pit initiation and growth rates.  相似文献   

6.
Kinetics and mechanism of nitrate ion reduction on Pt(1 1 1) and Cu-modified Pt(1 1 1) electrodes have been studied by means of cyclic voltammetry, potentiostatic current transient technique and in situ FTIRS in solutions of perchloric and sulphuric acids to elucidate the role of the background anion. Modification of platinum surface with copper adatoms or small amount of 3D-Cu crystallites was performed using potential cycling between 0.05 and 0.3 V in solutions with low concentration of copper ions, this allowed us to vary coverage θCu smoothly. Following desorption of copper during the potential sweep from 0.3 to 1.0 V allowed us to estimate actual coverage of Pt surface with Cu adatoms. Another manner of the modification was also applied: copper was electrochemically deposited at several constant potentials in solutions containing 10−5 or 10−4 M Cu2+ and 5 mM NaNO3 with registration of current transients of copper deposition and nitrate reduction.It has been found that nitrate reduction at the Pt(1 1 1) surface modified by copper adatoms in sulphuric acid solutions is hindered as compared to pure platinum due to induced sulphate adsorption at E < 0.3 V. Sulphate blocks the adsorption sites on the platinum surface and/or islands of epitaxial Cu(1 × 1) monolayer thus hindering the adsorption of nitrate anions and their reduction. The extent of inhibition weakly depends on the copper adatom coverage. Deposition of a small amount of bulk copper does not affect noticeably the rate of nitrate reduction.Nitrate reduction on copper-modified Pt(1 1 1) electrodes in perchloric acid solutions occurs much faster as compared to pure platinum. The steady-state currents are higher by 4 and 2 orders of magnitude at the potentials of 0.12 and 0.3 V, respectively. The catalytic effect of copper adatoms is largely caused by the facilitation of nitrate adsorption on the platinum surface near Cuad and/or on the islands of the Cu(1 × 1) monolayer (induced nitrate adsorption).Hydrogen adatoms block the adsorption sites on platinum for NO3 anion adsorption and inhibit reactions of nitrate reduction even at moderate surface coverage.The products of nitrate reduction in sulphuric and perchloric acids are essentially the same (NO and ammonia) irrespective of the presence or absence of Cu on the platinum surface.  相似文献   

7.
Copper complex ethylenediamine tetraacetic acid (Cu(II)-EDTA) was oxidized in supercritical water in a continuous tubular reactor at temperatures 420–500 °C, residence times 57–144 s, and a pressure 25 MPa. The major carbon-containing products were CO2 and CO. The TOC conversions increased steadily with reaction temperature and residence time, and the yield of CO can be effectively reduced at elevating temperatures. Ammonia was determined to be the main refractory nitrogen-containing intermediate, whose oxidation was supposed to be enhanced by the copper in Cu(II)-EDTA. In addition, the copper transformed into copper oxides (CuO and Cu2O), and was removed from the Cu(II)-EDTA solution with high efficiency. Based on the experimental results and the analysis of reaction pathways, a global Arrhenius kinetic model was proposed to predict the removal of TOC and the yield of the intermediates NH3 and CO. With this kinetic model, a computational fluid dynamic (CFD) model of the tubular reactor was implemented to assist the experimental study. The composition profiles of TOC, CO, and CO2 along the reactor were simulated and compared with the experimental results. Operating parameters, reaction temperature and oxygen flow rate, were optimized based on the simulation results.  相似文献   

8.
The effects of ceria (CeO2) abrasives in chemical mechanical polishing (CMP) slurries were investigated on silicon dioxide (SiO2) and silicon nitride (Si3N4) polishing process. The ceria abrasives were prepared by the flux method, using potassium hydroxide (KOH) as the grain growth accelerator. The primary particle size of the ceria abrasives was controlled in the range of ~ 84-417 nm by changing the concentration of potassium hydroxide and the calcination temperature without mechanical milling process. The removal rate of silicon dioxide film strongly depended upon abrasive size up to an optimum abrasive size (295 nm) after CMP process. However, the surface uniformity deteriorated as abrasive size increases. The observed polishing results confirmed that there exists an optimum abrasive size (295 nm) for maximum removal selectivity between oxide and nitride films. In this study, polishing behaviors of the ceria abrasives were discussed in terms of morphological characteristics.  相似文献   

9.
Although the electroless plating method is known to be an effective method for obtaining fine wiring in particular, 1 mol hydrogen gas is generated during 1 mol Cu deposition, and voids are generated in the wiring when electroless Cu plating is applied to fine wiring. To avoid the hydrogen evolution, the possibility of performing electroless Cu plating was confirmed using an inexpensive FeII compound as a reducing agent. The bath contains CuSO4, FeSO4, NaCl, ethylenediamine, sodium citrate, polyethylene glycol (PEG), and 2,2′-bipyridine. Under optimal conditions, over 1.7 μm of copper deposit with a smooth surface was obtained after 3 h of plating, which did not contain iron as an impurity. The electrical resistivity of the copper film is about 3-4 μΩ cm corresponding to that of electroplated copper films.  相似文献   

10.
Copper oxidation in aqueous solutions of pH 8 showed some differences in the presence of bicarbonate and phosphate ions. The bicarbonate ions did not interfere with Cu2O film formation but the Cu2+ ions were stabilized by the complexing action of CO 2– 3 anions. In phosphate solutions, copper dissolved in the range of potentials associated with the Cu(I) oxidation state and the Cu(II) compound on the surface resulted in an extensive passivation region. In both solutions, a higher ion concentration caused an increase in the anodic current, suggesting that the copper ions were stabilized by the complexing action of the electrolyte. The copper oxidation current in a bicarbonate solution was higher than that observed in a phosphate solution of the same concentration. The thickness of the Cu(II) film rather than the Cu(I) layer appears to be the important factor related to the stability of the passive layer on the copper surface. The shift in the breakdown potential toward more positive values indicates that both bicarbonate and phosphate ions inhibit localized corrosion due to the presence of chloride ions. Their protective effect depends on the concentration of each anion, although the concentration of chloride ions necessary for pitting is larger in phosphate solutions than in bicarbonate solutions. In both solutions, long-term immersion of copper under anodic polarization results in the precipitation of a protective coating.  相似文献   

11.
This paper studies attained microstructures and reactive mechanisms involved in vacuum infiltration of copper aluminate preforms with liquid aluminium. At high temperatures, under vacuum, the inherent alumina film enveloping the metal is overcome, and aluminium is expected to reduce copper aluminate, rendering alumina and copper. Under this approach, copper aluminate toils as a controlled infiltration path for aluminium, resulting in reactive wetting and infiltration of the preforms.Ceramic preforms containing a mixture of Al2O3 and CuAl2O4 were infiltrated with aluminium under distinct vacuum levels and temperatures, and the resulting reaction and infiltration behaviour is discussed. Copper aluminates stability ranges depend on vacuum level and oxygen partial pressure, which determine both CuAl2O4 and CuAlO2 ability for liquid aluminium infiltration. At 1100 °C and 0.76 atm vacuum level CuAl2O4 is stable, indicating pO2 above 0.11 atm. Reactive infiltration is achieved via reaction between aluminium and CuAl2O4; however, fast formation of an alumina film blocking liquid aluminium wicking results in incipient infiltration. At 1000 °C and 3.8 × 10−7 atm vacuum level, CuAlO2 decomposes to Cu and Al2O3 indicating a pO2 below 6.0 × 10−7 atm; infiltration of the ceramic is hindered by the non-wetting behaviour of the resulting metal alloy. At 1000 °C and 1.9 × 10−6 atm vacuum level CuAlO2 is stable, indicating pO2 above 6.0 × 10−7 atm. Extensive infiltration is achieved via redox reaction between aluminium and CuAlO2, rendering a microstructure characterised by uniform distribution of alumina particles amid an aluminium matrix.This work evidences that liquid aluminium infiltration upon copper aluminate-rich preforms is a feasible route to produce Al-matrix alumina-reinforced composites. The associated reduction reaction renders alumina, as fine particulate composite reinforcements, and copper, which dissolves in liquid aluminium contributing as a matrix strengthener.  相似文献   

12.
This study investigated the effect of a specific adsorption ion, copper (II) ion, on the kinetics of the charge transfer reaction at a LiMn2O4 thin film electrode/aqueous solution (1 mol dm−3 LiNO3) interface. The zeta potential of LiMn2O4 particles showed a negative value in 1 × 10−2 mol dm−3 LiNO3 aqueous solution, while it was measured as positive in the presence of 1 × 10−2 mol dm−3 Cu(NO3)2 in the solution. The presence of copper (II) ions in the solution increased the charge transfer resistance, and CV measurement revealed that the lithium insertion/extraction reaction was retarded by the presence of small amount of copper (II) ions. The activation energy for the charge transfer reaction in the solution with Cu(NO3)2 was estimated to be 35 kJ mol−1, which was ca. 10 kJ mol−1 larger than that observed in the solution without Cu(NO3)2. These results suggest that the interaction between the lithium ion and electrode surface is a factor in the kinetics of charge transfer reaction.  相似文献   

13.
In this paper copper selenide nanostructures were synthesized via a simple hydrothermal method based on the reaction between copper salt and SeCl4 in water. The reduction reaction of SeCl4 to Se and then Se2− was carried out by three types of reductants: N2H4.H2O, KBH4, and metallic Zn. Different compositions of copper selenides were obtained by changing the molar ratio of the precursors. At the temperature of 120 °C for a 12 h period of time, when the molar ratio of Cu/Se is 1:1 or 2:1, the product is pure and found to be CuSe and Cu1.8Se, respectively. A mixture of the different phases of copper selenides is obtained by making use of 1:2, 3:2 and 3:1 M ratios between Cu and Se. With an increasing reaction temperature up to 210 °C, the mixture of Cu3Se2 and CuSe is prepared from 1:1 M ratio of precursors. The effects of copper salt, surfactant, amount of hydrazine, reaction time and temperature on the morphology and particle size of products are also investigated. The synthesis can be performed conveniently and safely. The products are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS) analysis. Photoluminescence (PL) is used to study the optical property of copper selenides.  相似文献   

14.
Electrogenerated polymers based on copper salen-type complexes were characterised electrochemically and by in situ UV-vis and ex situ EPR spectroscopy. The films, poly[Cu(salen)] and poly[Cu(saltMe)], exhibit reversible oxidative electrochemical behaviour in a wide potential range (0.0-1.5 V). Different regimes for charge transport behaviour are accessed by manipulation of film thickness and experimental time scale: thin films (surface concentration, Γ < ca. 80 nmol cm−2) show thin-layer/surface behaviour in the scan rate range used (0.020-2.0 V s−1), whereas thicker polymers (Γ > ca. 90 nmol cm−2) exhibit a changeover from thin-layer to diffusion control regime at a critical scan rate that depends on polymer and film thickness: 0.15-0.20 V s−1 for poly[Cu(salen)], 90 < Γ < 130 nmol cm−2 and 0.20-0.30 V s−1 for poly[Cu(saltMe)], 170 < Γ < 230 nmol cm−2.UV-vis and EPR spectroscopies have allowed the characterisation of electronic states in the reduced and oxidised forms. The role of the copper atom during film oxidation was probed by combining UV-vis data with EPR on copolymers of the copper and nickel complexes. Data from both techniques are consistent and indicate that polymerisation and redox switching are associated with ligand-based processes. EPR of Ni-doped Cu polymers provided evidence for the non-involvement of the metal centre in polymer oxidation; like the analogous nickel polymers, copper polymers behave like delocalised π-system (‘conducting’) rather than discrete site (‘redox’) polymers.  相似文献   

15.
Non conventional nickel (1%) and nickel (1%)-copper (0.2%-0.75%) catalysts supported on silica have been prepared by aqueous hydrazine reduction of nickel acetate at 70 °C. They were characterized by TEM, H2-adsorption, H2-TPD and tested in the gas phase hydrogenation of benzene at atmospheric pressure in the temperature range 75 °C-230 °C. The obtained results show that nickel is in a whisker-like shape or as a film of low density for the Ni/SiO2 and Ni-Cu/SiO2 catalysts respectively. Copper is in the shape of facetted particles in the mono or bimetallic systems with a mean particle size varying from 25 to 100 nm. The presence of copper decreased the nickel phase dispersion as well as the conversion whereas it increased carbon deposit in benzene hydrogenation. The results obtained are ascribed to nickel phase shape changes and Ni-Cu interactions. A kinetic reaction mechanism model is proposed. The comparative study of a pair of classical/non-classical Ni/SiO2 catalysts showed much higher surface and catalytic properties of the hydrazine catalyst.  相似文献   

16.
Copper ferrite nanopowders were successfully synthesized by a microwave-induced combustion process using copper nitrate, iron nitrate, and urea. The process only took a few minutes to obtain CuFe2O4 nanopowders. The resultant powders were investigated by XRD, SEM, VSM, and surface area measurement. The results revealed that the CuFe2O4 powders showed that the average particle size ranged from 300 to 600 nm. Also, it possessed a saturation magnetization of 21.16 emu/g, and an intrinsic coercive force of 600.84 Oe, whereas, upon annealing at 800 °C for 1 h. The CuFe2O4 powders specific surface area was 5.60 m2/g. Moreover, these copper ferrite magnetic nanopowders also acted as a catalyst for the oxidation of 2,3,6-trimethylphenol to synthesize 2,3,5-trimethylhydrogenquinone and 2,3,5-trimethyl-1,4-benzoquinone for the first time. On the basis of experimental evidence, a rational reaction mechanism is proposed to explain the results satisfactorily.  相似文献   

17.
In the last few years, several strategies towards boosting the electrochemical performance of LiFePO4 cathodes have been envisaged. Copper addition to the phosphate seems to be a simple, inexpensive method for this purpose. However, it has a serious drawback: at voltages slightly higher than that required for lithium extraction from LiFePO4, the copper is oxidized to either Cu(I) or Cu(II) with partial decomposition of the electrolyte. XRD patterns are consistent with the disappearance of copper from pristine composites upon charging at up to 4.0 V. Moreover, a copper deposit is formed on the lithium surface in the discharged state that creates a barrier hindering the release of Li ion from the electrode. Therefore, copper electroactivity strongly influences the capacity and cycling life of the cell.  相似文献   

18.
The silver ion cementation on copper was investigated in the presence or absence of oxygen in solutions containing 1.85 × 10−4 M Ag+ at 25 °C. The influence of sulphuric acid and copper sulphate concentration (0.005-0.5 M) on the silver cement morphology was studied in details and results were linked with the previously determined kinetics data of the process. The morphology of silver deposit was found to be independent of the presence of oxygen in the system as well as the sulphuric acid concentration. Contrary, the concentration of copper sulphate strongly influenced the morphology of silver deposit. At the beginning of the cementation process silver covers uniformly the copper surface. Afterwards, a growth of dendrites is initiated on preferential parts of the surface. The growing dendrite behaves as cathodic sites, with relatively huge surface area and promotes the creation of anodic sites in a close neighbourhood. Finally, the anodic site encloses the dendrite island and develops its area inward the copper material. Copper ions at low concentration modified slightly silver dendrites but the increase in concentration up to 0.5 M Cu2+ leads to completely disappearance of dendrites from the surface. The lack of dendrites on the surface is a result of the competitive process that consumes additional silver ions, occurring in the bulk of the solution. The morphology of silver deposit cemented in the deoxygenated solution containing 0.5 M H2SO4 + 0.5 M CuSO4 depends strongly on the mechanism of the process.  相似文献   

19.
Copper chloride modified copper (CCMC) electrode was prepared as a new electrode. For the preparation of the modified electrode, the polished copper electrode was placed in 0.1 M CuCl2 solution for 20 s. In this step, a layer of copper (I) chloride was formed at the surface of copper electrode. Then, the electrode was placed in 0.1 M NaOH and the electrode potential was cycled between −250 and 1000 mV (vs. SCE) at a scan rate of 50 mV s−1 for 5 cycles in a cyclic voltammetry regime until a featureless voltammogram was obtained. Surface physical characteristics of the modified electrode were studied by scanning electron micrographs (SEM). Results showed that considerable amounts of microcrystals have been formed on the copper surface during the modification. Surface elemental analysis of electrode were performed by energy dispersive X-ray (EDX) technique. The results showed that in addition to copper and chloride elements, there is also oxygen at the surface of CCMC electrode. This indicates that a layer of (ClCu)2O was formed at the surface of the modified electrode. The electrocatalytic activity of the modified electrode for the oxidation of methanol, in aqueous basic solution was studied by using cyclic voltammetry. Results showed that, copper chloride modified electrode can improve the activity of Cu towards the oxidation of this small organic molecule, showing the possibility of attaining good electrocatalytic anodes for fuel cells. The modified electrode shows a stable and linear response in the concentration range of 5 × 10−3 to 8 × 10−2 M with a correlation coefficient of 0.9958.  相似文献   

20.
The electrodeposition of copper on pyrolytic graphite from CuSO4 or Cu(NO3)2 in a 1.8 M H2SO4 aqueous solution was investigated. The Cu deposits were formed potentiostatically and characterized by electrochemical methods, scanning electron microscopy, energy dispersive X-ray and X-ray photoelectron spectroscopy. It was found that the deposition of copper in the presence of CuSO4 induced the codeposition of sulfate anions. In addition, electrochemical quartz crystal microbalance revealed that the increase of the Cu mass was higher than expected from Faraday's law with the CuSO4/H2SO4 solution. These results confirmed the specific adsorption of anions during the Cu deposition. On the other hand, the use of Cu(NO3)2 resulted in a non-contaminated surface with different surface morphologies. The Cu nuclei size, the population density and the surface coverage were monitored as a function of the deposition potential. From the analysis of the chronoamperometric curves, the nucleation kinetics was studied by using various theoretical models. Independently of the Cu source, the nucleation mechanism follows a three-dimensional (3D) process. Copper nucleates according to an instantaneous mode when the deposition potential is more negative than −300 mV versus Ag/AgCl, while the nucleation was interpreted in terms of a progressive mode at −150 mV. The nuclei population densities were also determined by using two common fitting models for 3D nucleation and growth (Scharifker-Mostany and Mirkin-Nilov-Heerman-Tarallo). Their values are reported here as a function of the deposition potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号