首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The multiple specimen J 0.2/BL initiation fracture toughness test procedure from the ISO standard, ISO 12135:2002, is evaluated using the EURO fracture toughness data set. This standard is also compared with the ASTM standard, ASTM E 1820, multiple specimen J Ic procedure. The EURO round robin data set was generated to evaluate the transition fracture toughness methods for steels. However, many of the tests resulted in ductile fracture behavior giving final J versus ductile crack extension points. This is the information that is measured in a multiple specimen J initiation fracture toughness test. The data set has more than 300 individual points of J versus crack extension with four different specimen sizes. It may be the largest data set of that type produced for one material. Therefore, its use to determine J initiation values can provide an important evaluation of the standard procedures. The results showed that a J 0.2/BL value could be determined from the ISO standard for three of the four specimen sizes, the smallest size did not meet the specimen size requirement on J. The construction line slopes in this method are very steep compared with the ASTM construction line slopes. This resulted in low J initiation values, about a factor of two lower than the one from the ASTM method. Of the various criteria imposed to determine a valid J 0.2/BL value, the one limiting the maximum J value was the most questionable. It had an effect of eliminating small specimen data that was identical to acceptable large specimen data.  相似文献   

2.
Polytetrafluoroethylene (PTFE) (Dupont Tradename Teflon) is a common polymer with many structural applications including sheet, gaskets, bearing pads, piston rings and diaphragms. The interest here developed because this polymer is being considered as the major component of a newly proposed `reactive' material with a possible application as a projectile to replace common inertial projectiles. Little mechanical property data is available on this material since it is commonly used only as a coating material with the dominant properties being its low friction coefficient and high application temperature. Previous work (Joyce, 2003) on commercially available sheet PTFE material has demonstrated the applicability of the normalization method of ASTM E1820 (1999), the elastic-plastic fracture toughness standard to develop fracture toughness properties of this material over a range of test temperatures and loading rates. Additional work on the aluminum filled `reactive' derivative of the basic PTFE polymer (Joyce and Joyce, 2004) has also recently been completed. In this work, standard ASTM E1820 fracture toughness specimens machined from sintered pucks of PTFE were tested at four test temperatures and at a range of test rates to determine the J Ic and J resistance curve characteristics of the PTFE material. The major results are that while crack extension is difficult at standard laboratory loading rates at ambient (21 °C) temperature or above, for temperatures slightly below ambient or for elevated loading rates, a rapid degradation of fracture resistance occurs and cracking occurs in a ductile or even nearly brittle manner.  相似文献   

3.
Crack extension during fracture toughness tests of ferritic structural steels cannot be determined from measurements of unloading compliance or electric potential change when the specimen is dynamically tested. Measurements of crack extension in fracture toughness tests are also very difficult when the test temperature is high or the test environment is aggressive. To circumvent this limitation, researchers for years have been developing key curve and normalization function methods to estimate crack extension in standard elastic-plastic fracture toughness test geometries. In the key curve method (Ernst et al., 1979; Joyce et al., 1980) a load-displacement curve is measured for a so-called `source' specimen that is sub size or has a blunt notch so that the crack will not initiate during elastic-plastic loading. The load and displacement are then converted to normalized stress-strain units to obtain a key curve that can be used to predict crack extension in geometrically similar `target' specimens of same material loaded at similar loading rates and tested under similar environmental conditions. More recently Landes and coworkers (Herrera and Landes, 1990; Landes et al., 1991) proposed the normalization data reduction technique – Annex A15 of ASTM 1820 specification – that presents an alternative to the standard E1820 unloading compliance procedure. Although the normalization method works well in many cases, it has serious drawbacks: the load, displacement and crack length at the end of the test must be measured; the prescribed functional form that is fitted to the initial and final data may not be accurate for all materials; and the iterative method of inferring crack length from the combination of the data and the normalization function is complex. The compliance ratio (CR) method developed in this paper determines key curves for predicting crack extension as follows. First, a statically loaded source specimen with the unloading compliance procedure specified in ASTM 1820. Second, the so-called CR load-displacement curve is calculated for the source specimen, which is the load-displacement record that would have been obtained if the crack had not extended. Third, non-dimensionalizing the CR load by the maximum load and the displacement by the elastic displacement at the maximum load, P * i/P max and v i/v el max from the source specimen yields the adjusted key curve. Analysis of extensive data shows that the key curve is independent of notch type, initial crack length and temperature. But it is dependent on specimen size and steel type. Assuming that the key curves of the source and target specimens are one and the same, the compliance of the target specimens are calculated with a reverse application of the compliance ratio method, and the crack length is obtained using the equations in ASTM E1820. The CR Method is found to be much simpler than the normalization method described in the Annex A15 of ASTM 1820. With the compliance ratio method, Joyce et al. (2001) successfully predicted crack extension in dynamically loaded specimens using a key curve of a statically loaded specimen.  相似文献   

4.
Laboratory testing of fracture specimens to measure resistance curves (J − Δa) have focused primarily on the unloading compliance method using a single specimen. Current estimation procedures (which form the basis of ASTM E1820 standard) employ load line displacement (LLD) records to measure fracture toughness resistance data incorporating a crack growth correction for J. An alternative method which potentially simplifies the test procedure involves the use of crack mouth opening displacement (CMOD) to determine both crack growth and J. However, while the J-correction for crack growth effects adopted by ASTM standard holds true for resistance curves measured using load line displacement (LLD) data, it becomes unsuitable for J-resistance measurements based upon the specimen response defined in terms of load-crack mouth opening displacement (CMOD). Consequently, direct application of the evaluation procedure for J derived from LLD records in laboratory measurements of resistance curves using CMOD data becomes questionable. This study provides further developments of the evaluation procedure for J in cracked bodies that experience ductile crack growth based upon the eta-method and CMOD data. The introduction of a constant relationship between the plastic components of LLD (Δ p ) and CMOD (V p ) drives the development of a convenient crack growth correction for J with increased loading when using laboratory measurements of P-CMOD data. The methodology broadens the applicability of current standards adopting the unloading compliance technique in laboratory measurements of fracture toughness resistance data (J resistance curves). The developed J evaluation formulation for growing cracks based on CMOD data provides a viable and simpler test technique to measure crack growth resistance data for ductile materials.  相似文献   

5.
The effect of thickness and width of CT specimens on the plastic zone size has been investigated. The investigation also examines the applicability of the various approaches to fracture toughness measurements such as ASTM E399 KIc, JIc, R-curve and a new procedure of KIc determination proposed recently, to a steel which has medium strength and which undergoes pop-in type unstable crack extension during the toughness testing. The results show that in CT specimens with a constant aspect ratio prepared from a given material and loaded to a given stress intensity factor, the plastic zone size decreases, as the specimen width increases; on the other hand, the thickness has only a comparatively small effect on the plastic zone size. The new procedure of KIc determination is verified with experiments on specimens with width to thickness ratio of about 50 and it gives a size independent KIc value in specimens whose thickness is 4.5 times less than that required by ASTM E399. The new procedure gives a meaningful value of KIc in a situation where all other methods such as ASTM E399 KIc, JIc and R-curve approach are observed to be inapplicable.  相似文献   

6.
The cracked chevron notched Brazilian disc (CCNBD) specimen has been suggested by the International Society for Rock Mechanics to quantify mode I fracture toughness (KIc) of rock, and it has also been applied to mode II fracture toughness (KIIc) testing in some research on the basis of some assumptions about the crack growth process in the specimen. However, the KIc value measured using the CCNBD specimen is usually conservative, and the assumptions made in the mode II test are rarely assessed. In this study, both laboratory experiments and numerical modeling are performed to study the modes I and II CCNBD tests, and an acoustic emission technique is used to monitor the fracture processes of the specimens. A large fracture process zone and a length of subcritical crack growth are found to be key factors affecting the KIc measurement using the CCNBD specimen. For the mode II CCNBD test, the crack growth process is actually quite different from the assumptions often made for determining the fracture toughness. The experimental and numerical results call for more attention on the realistic crack growth processes in rock fracture toughness specimens.  相似文献   

7.
Fracture toughness is one of the key input variables to compute critical load of the structural components. The resistance against ductile fracture can be quantified either by the initiation value or by the entire resistance curve. Different standard methods like JSZW, JSME and ASTM: E1820 etc. are mainly used to estimate the critical crack initiation value from the resistance curve developed by the J-integral test. However, the results vary from method to method and are even inconsistent for the same method. Pehrson and Landes suggested a simple method for estimation of the critical fracture toughness by identifying the critical point corresponding to the maximum load on load–displacement curve. In the present study, different standard methods along with the one suggested by Pehrson and Landes are used to find out the critical fracture toughness using 1T–CT and ½T–CT specimens of the material 20MnMoNi55 steel for varying temperatures and crack size. The results are analyzed to compare the merits of the different methods of estimation of fracture toughness.  相似文献   

8.
This paper addresses the fracture toughness evaluation procedure of different zones of dissimilar metal weld (DMW). Experiments have been conducted on compact tension specimens from DMW joint having initial notch in centre of weld and fusion boundaries. Plastic eta factors (ηp) and slope of blunting line (bl) for above specimens have been evaluated numerically. Experimental load, load line displacement, and crack growth data along with numerically evaluated ηp and bl have been used for calculation of fracture resistance curve and initiation fracture toughness, and finally, it has been compared with that evaluated as per ASTM E1820 and ESIS standard.  相似文献   

9.
Study of the thickness effect in predicting the crack growth behavior and load bearing capacity of rock‐type structures is an important issue for obtaining a relation between the experimental fracture toughness of laboratory subsized samples and the real rock structures with large thickness. The fracture of rock masses or underground rock structures at deep strata may be dominantly governed by the tensile or tear crack growth mechanism. Therefore, in this research, a number of mode I and mode III fracture toughness experiments are conducted on edge notch disc bend (ENDB) specimen made of a kind of marble rock to investigate the effect of specimen thickness on the corresponding KIc and KIIIc values. It is observed that the fracture toughness of both modes I and III are increased by increasing the height of the ENDB specimen. Also, the ratio of KIIIc/KIc obtained from each thickness of the ENDB specimens is compared with those predicted by some fracture criteria, and it was shown that the minimum plastic radius (MPR) criterion is the main suitable criterion for investigating the fracture toughness ratio KIIIc/KIc . Also, the effect of ENDB height on fracture trajectory of tested samples is assessed. It is shown that the crack grows curvilinearly in thicker ENDB samples and cannot extend along the crack front in small specimens.  相似文献   

10.
The fracture toughness, JIc of a 3.5 Ni-Cr-Mo-V steel has been measured using the ASTM method. The results have been used to predict the stress intensity factor, KIc from the relationship between linear elastic and elastic-plastic fracture parameters. These predicted values were compared with KIc values obtained from empirical equations based on valid KIc tests, involving the Charpy upper shelf energy. It was found that the ASTM method for measuring JIc led to conservative estimates of KIc.  相似文献   

11.
In this investigation, five estimation methods have been adopted to estimate the dynamic fracture toughness of a nuclear pressure vessel steel A508 CL3 by using pre-cracked Charpy-size specimens on an instrumented impact test machine. Furthermore, the merits and the demerits of the five methods have also been compared. The experimental results indicate that the maximum load energy method based on the curve of load versus load-point displacement overestimates the dynamic fracture toughness J Id , especially above room temperature. The method of compliance changing rate underestimates the dynamic fracture toughness. The method of measuring the critical stretch zone width (SZW c ) at the crack tip by means of SEM fractography and then converting the SZW c into J Id has a relatively large error. In addition, it is expensive and difficult to measure the SZW c . The method of energy revised at the maximum load may be considered a better single-specimen method for determining the dynamic fracture toughness. Furthermore, the results indicate that although the dynamic resistance curve method can exactly estimate the dynamic fracture toughness of the material, this method needs several specimens. Moreover, the test procedure is complicated. Thus, it is not suitable for nuclear reactor pressure vessel embrittlement surveillance.  相似文献   

12.
The construction of a fracture resistance δR (or JR) curve requires the appropriate measurement of crack-tip opening displacement (CTOD) as a function of crack extension. This can be made by different procedures following ASTM E1820, BS7448 or other standards and procedures (e.g., GTP-02, ESIS-P2, etc.) for the measurement of fracture toughness. However, all of these procedures require standard specimens, displacement gauges, and calibration curves to get intrinsic material properties. This paper deals with some analysis and aspects related to the measurement of fracture toughness by observing the surface of the specimen. Tests were performed using three-dimensional surface displacement measurements to determine the fracture parameters and the crack extension values. These tests can be conducted without using a crack mouth opening displacement-CMOD or load-line displacement gauge, because CMOD can be calculated by using the displacement of the surface points. The presented method offers a significant advantage for fracture toughness testing in cases where a clip gauge is not easy to use, for example, on structural components. Simple analysis of stereo-metrical surface displacements gives a load vs. crack opening displacement curve. Results show that the initiation of stable crack propagation can be easy estimated as the point of the curve’s deviation. It is possible to determine the deviation point if the crack opening displacement measurements are close to crack tip in the plastic zone area. The resistance curve, CTOD-R, is developed by the local measurement of crack opening displacement (COD) in rigid body area of specimen. COD values are used for the recalculation with the CMOD parameter as a remote crack opening displacement, according to the ASTM standard.  相似文献   

13.
Chevron Specimen for the Estimation of Fracture Toughness Fracture toughness is a material property which is presently used in many industrial areas, either as material selection criteria or as material quality requirement. In some areas, nuclear power plants and aerospace, it is also a design parameter for design against catastrophic failures. Determination of the fracture toughness in accordance with ASTM E 399 is relatively elaborate. Depending on the material concerned, a certain minimum material cross section is required to obtain the necessary size of the specimen. Many semi-finished product forms of the different materials can not be tested for fracture toughness due to the specimen size requirements. For these reasons, alternative test methods were sought of which testing of chevron-notched specimens is one method. In the work to be presented, the test method to determine fracture toughness via chevron-notched specimens is briefly described. The most frequently used chevron-notched specimens are shown together with loading grips to be used in conjunctions with universal testing machines. Certain effects associated with some of the chevronnotched specimens are pointed out which result in a large difference between the fracture toughness determined in accordance with ASTM E 399 and that obtained via chevron-notched specimens. The aim of our research effort is to develop a chevron-notched specimen geometry which furnishes fracture toughness values compatible with KIc values without complicating the test method. Such a chevronnotched specimen is presented and the fracture toughness values obtained from these specimens of 7475-T 7351 and different Ti-alloys are compared to the KIc values obtained in accordance with ASTM E 399 for the same materials.  相似文献   

14.
Effect of thickness on ductile fracture toughness of plates made of steel alloy GOST 08Ch22N6T is investigated experimentally. Multiple specimen tests for determining fracture toughness have been conducted using compact tension (CT) specimens with thicknesses of 1.25, 1.64 and 4.06 mm according to standard test method ASTM E813. The results show the significant effect of thickness on fracture toughness. It is observed that in low thickness, Jc increases with the thickness increase until it reaches a maximum; however, further increase in the thickness causes the Jc-value to decrease. Two-dimensional finite element analysis is also performed to reproduce the experimental results. The comparison shows a very good agreement.  相似文献   

15.
For characterization of the fracture resistance of materials used in the upper shelf toughness regime,J-R curves are widely considered the most promising candidates. However, there still remain problems concerning both the generation and measurement ofJ-R curves as material characterizing parameters and their application in ductile fracture analyses for failure prediction in polymeric materials. This paper reports the results of investigations conducted on two rubbertoughened nylons at room temperature. Two different methods ofJ-R curve determination are covered, namely multi-specimen and single specimen test methods. The resultingJ-R curves have also been evaluated to obtain values of the initiation toughness,J IC, following the extrapolation and interpolation schemes prescribed by ASTM E813-81 and ASTM E813-87 test procedures, respectively. The results show that the multiple specimen unloading method and the single specimen partial unloading compliance method can be used to generate comparable crack growth resistanceJ-R curves of the toughened nylons. The value ofJ IC for the crystalline rubber-toughened nylon was approximately twice the value obtained for the amorphous rubber-toughened nylon. The former material also exhibited a greater resistance to ductile crack growth.  相似文献   

16.
The methods for experimental determination of strength characteristics as per applicable standards have been reviewed. For some structural steels used in NPP facilities, the influence of loading parameters and specimen geometry are allowed for during the assessment of static fracture toughness (KIc, JIc). Recommendations are given on the setting of cycling conditions for fracture toughness testing of standard specimens with and without crack-guiding lateral grooves. The authors substantiate the applicability of the Master Curve method to determination of fatigue strength of small specimens with subsequent use of the results for calculating brittle fracture resistance of reactor pressure vessel materials in the welded joint.  相似文献   

17.
Costs of ASTM E399 and ASTM E1921 tests, which were developed to determine the fracture toughness (KIc) and the ductile–brittle transition temperature of ferritic steels, respectively, are considered high and the procedures are also very complicated. In this study, a method, which is more cost‐effective and easier to carry out, is proposed.  相似文献   

18.
Characterization and Evaluation of Common Methods of Measuring Jic-Values for Nuclear Pressure Vessels Steels A JIc test procedure using a single deeply cracked specimen was proposed. The crack extension is measured by partially unloading the specimen to determine the elastic compliance. JIc tests were made using ferritic steels. No size effect was found. The errors due to simple formulation of JI calculation, periodic partial unloading, and simplified analysis for the extension of deep cracks in compact specimens are explored. The measurement point of crack extension for establishing JIc is discussed. Moreover, a proposal of characterising JIc by means of a resistance curve technique was developed. J-values from CT-specimens containing a deep precrack are plotted as a function of crack extension measured from the specimen fracture surface. Using these plots a technique is suggested for establishing a JIc measurement point. Finally, a step-by-step procedure for measuring JIc was outlined.  相似文献   

19.
This paper investigates the influence of fibre volume fraction on the mode I interlaminar fracture toughness G Ic of a glass-fibre/vinyl ester composite. Two fibre volume fraction parameters are defined; a global value for the composite specimen and a value for the fibre-dense intralaminar regions. The range of global fibre volume fraction studied was 32–52 %. Results show that G Ic values for crack initiation are independent of fibre volume fraction and similar to matrix resin G Ic . Variations in the G Ic for steady-state crack propagation, and the amount of fibre bridging, are not completely explained by changes in global fibre volume fraction. Instead they are consistent with fibre volume fraction in the fibre-dense intralaminar regions, through which the crack preferred to grow. It is concluded that this latter parameter is more relevant for G Ic characterisation as a function of fibre volume fraction.  相似文献   

20.
In the present study, fatigue and fracture characteristics of sensitized marine grade Al‐Mg (AA 5754) alloy are experimentally evaluated. Received alloy is sensitized at temperatures of 150°C (SENS50) and 175°C (SENS75) for 100 hours. Fracture parameters, KIc and JIc, are experimentally evaluated. Slow strain rate tensile tests at a crosshead speed of 0.004, 0.006, and 0.01 mm/min; fatigue crack growth tests at load ratios (R = Pmin/Pmax) of 0.1, 0.2, and 0.5; and low cycle fatigue tests at four strain amplitudes of (0.3‐0.6)% are performed for SENS50 and SENS75 alloys. Relatively lower magnitude of fracture toughness values are observed for SENS75 specimen. Severe degradation in tensile properties, fatigue crack growth characteristics, and low cycle fatigue lives are observed for SENS75 samples. Extended finite element method is adopted to simulate the elasto‐plastic crack growth during fracture toughness evaluation. Scanning electron microscopy (SEM) is used to understand the failure mechanism of sensitized alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号