首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the $ {cal L}_{2}$ gain of periodic linear switched systems under fast switching. For systems that possess a suitable notion of a time-average system, we characterize the relationship between the ${cal L}_{2}$ gain of the switched system and the ${cal L}_{2}$ gain of its induced time-average system when the switching rate is sufficiently fast. We show that the switched system ${cal L}_{2}$ gain is in general different from the average system ${cal L}_{2}$ gain if the input or output coefficient matrix switches. If only the state coefficient matrix switches, the input-output energy gain for a fixed ${cal L}_{2}$ input signal is bounded by the ${cal L}_{2}$ gain of the average system as the switching rate grows large. Additionally, for a fixed ${cal L}_{2}$ input, the maximum pointwise in time difference between the switched and average system outputs approaches zero as the switching rate grows.   相似文献   

2.
Motivated by questions in robust control and switched linear dynamical systems, we consider the problem checking whether all convex combinations of $k$ matrices in $R^{n times n}$ are stable. In particular, we are interested whether there exist algorithms which can solve this problem in time polynomial in $n$ and $k$. We show that if $k= lceil n^{d} rceil $ for any fixed real $d>0$, then the problem is NP-hard, meaning that no polynomial-time algorithm in $n$ exists provided that $P ne NP$, a widely believed conjecture in computer science. On the other hand, when $k$ is a constant independent of $n$ , then it is known that the problem may be solved in polynomial time in $n$. Using these results and the method of measurable switching rules, we prove our main statement: verifying the absolute asymptotic stability of a continuous-time switched linear system with more than $n^{d}$ matrices $A_{i} in R^{n times n}$ satisfying $0 succeq A_{i} + A_{i}^{T}$ is NP-hard.   相似文献   

3.
We present a frequency domain solution to the sampled-data passivity problem. Our analysis is exact in the sense that we take into account the intersample behavior of the system. We use frequency response (FR) operators to first obtain necessary conditions on the sampling rate $T$ and the relative degree of the open-loop transfer function $G_{11}$ for achieving a passive continuous-time closed-loop system. Then, assuming passivity of $G_{11}$ and closed-loop stability, we derive a necessary and sufficient condition for discrete-time controllers that render a passive closed-loop system. We apply the obtained results to the problem of stability of haptic systems.   相似文献   

4.
This note develops a novel method for designing simultaneous $H^{infty}$ state feedback controllers for a collection of single-input nonlinear systems. Based on the Kalman—Yakubovich—Popov Lemma, necessary and sufficient conditions for the existence of simultaneous $H^{infty}$ controllers are derived by the control storage function approach. A universal formula for constructing continuous, time-invariant, simultaneous $H^{infty}$ state feedback controllers is presented.   相似文献   

5.
This paper describes a decentralized $H_{infty }$ filter design for discrete-time interconnected fuzzy systems based on piecewise-quadratic Lyapunov functions. The systems consist of $J$discrete-time interconnected Takagi–Sugeno (T–S) fuzzy subsystems, and a decentralized $H_infty$ filter is designed for each subsystem. It is shown that the stability of the overall filtering-error system with $H_{infty }$ performance can be established if a piecewise-quadratic Lyapunov function can be constructed. Moreover, the parameters of filters can be obtained by solving a set of linear matrix inequalities that are numerically feasible. Two simulation examples are given to show the effectiveness of the proposed approach.   相似文献   

6.
N-channel 6H-SiC depletion-mode junction field-effect transistors (JFETs) have been fabricated, and characterized for use in high-temperature differential sensing. Electrical characteristics of the JFETs have been measured and are in good agreement with predictions of an abrupt-junction long-channel JFET model. The electrical characteristics were measured across a 2-in wafer for temperatures from 25 $^{ circ}hbox{C}$ to 450 $^{circ}hbox{C}$, and the extracted pinchoff voltage has a mean of 11.3 V and a standard deviation of about 1.0 V at room temperature, whereas pinchoff current has a mean of 0.41 mA with standard deviation of about 0.1 mA. The change in pinchoff voltage is minimal across the measured temperature range, whereas pinchoff current at 450 $^{circ}hbox{C}$ is about half its value at room temperature, consistent with the expected change in the $nmu_{n}$ product. The characterization of differential pairs and hybrid amplifiers constructed using these differential pairs is also reported. A three-stage amplifier with passive loads has a differential voltage gain of 50 dB, and a unity-gain frequency of 200 kHz at 450 $^{circ}hbox{C}$, limited by test parasitics. A two-stage amplifier with active loads has reduced sensitivity to off-chip parasitics and exhibits a differential voltage gain of 69 dB with a unity-gain frequency of 1.3 MHz at 450 $^{circ}hbox{C}$.$hfill$[2009-0029]   相似文献   

7.
This paper describes the development of aluminum nitride (AlN) resonant accelerometers that can be integrated directly over foundry CMOS circuitry. Acceleration is measured by a change in resonant frequency of AlN double-ended tuning-fork (DETF) resonators. The DETF resonators and an attached proof mass are composed of a 1- $muhbox{m}$ -thick piezoelectric AlN layer. Utilizing piezoelectric coupling for the resonator drive and sense, DETFs at 890 kHz have been realized with quality factors $(Q)$ of 5090 and a maximum power handling of 1 $muhbox{W}$. The linear drive of the piezoelectric coupling reduces upconversion of $1/f$ amplifier noise into $1/f^{3}$ phase noise close to the oscillator carrier. This results in lower oscillator phase noise, $-$96 dBc/Hz at 100-Hz offset from the carrier, and improved sensor resolution when the DETF resonators are oscillated by the readout electronics. Attached to a 110-ng proof mass, the accelerometer microsystem has a measured sensitivity of 3.4 Hz/G and a resolution of 0.9 $hbox{mG}/surdhbox{Hz}$ from 10 to 200 Hz, where the accelerometer bandwidth is limited by the measurement setup. Theoretical calculations predict an upper limit on the accelerometer bandwidth of 1.4 kHz.$hfill$ [2008-0190]   相似文献   

8.
Analytical Model of Valveless Micropumps   总被引:2,自引:0,他引:2  
The flow driven by a valveless micropump with a single cylindrical pump chamber and two diffuser/nozzle elements is studied theoretically using a 1-D model. The pump cavity is driven at an angular frequency $omega$ so that its volume oscillates with an amplitude $V_{rm m}$. The presence of diffuser/nozzle elements with pressure-drop coefficients $zeta_{+}$, $zeta_{-}( ≫ zeta_{+})$ and throat cross-sectional area $A_{1}$ creates a rectified mean flow. In the absence of frictional forces the maximum mean volume flux (with zero pressure head) is $Q_{0}$ where $Q_{0}/V_{rm m}omega = (zeta_{-} -break zeta_{+})pi/16(zeta_{-}+zeta_{+})$, while the maximum pressure that can be overcome is $Delta P_{max}$ where $ Delta P_{max}A_{1}^{2}/V_{rm m}^{2} omega^{2} !=! (zeta_{-} -break zeta_{+})/16$. These analytical results agree with numerical calculations for the coupled system of equations and compare well with the experimental results of Stemme and Stemme.$hfill$ [2008-0244]   相似文献   

9.
We present a new temperature compensation system for microresonator-based frequency references. It consists of a phase-locked loop (PLL) whose inputs are derived from two microresonators with different temperature coefficients of frequency. The resonators are suspended within an encapsulated cavity and are heated to a constant temperature by the PLL controller, thereby achieving active temperature compensation. We show repeated real-time measurements of three 1.2-MHz prototypes that achieve a frequency stability of $pm$ 1 ppm from $-20 ^{circ}hbox{C}$ to $+80 ^{circ}hbox{C}$, as well as a technique to reduce steady-state frequency errors to $pm$0.05 ppm using multipoint calibration.$hfill$[2009-0074]   相似文献   

10.
This paper examines the use of deep reactive ion etching of silicon with fluorine high-density plasmas at cryogenic temperatures to produce silicon master molds for vertical microcantilever arrays used for controlling substrate stiffness for culturing living cells. The resultant profiles achieved depend on the rate of deposition and etching of an $hbox{SiO}_{x}hbox{F}_{y}$ polymer, which serves as a passivation layer on the sidewalls of the etched structures in relation to areas that have not been passivated with the polymer. We look at how optimal tuning of two parameters, the $ hbox{O}_{2}$ flow rate and the capacitively coupled plasma power, determine the etch profile. All other pertinent parameters are kept constant. We examine the etch profiles produced using electron-beam resist as the main etch mask, with holes having diameters of 750 nm, 1 $muhbox{m}$ , and 2 $muhbox{m}$. $hfill$[2008-0317]   相似文献   

11.
This paper presents the design, fabrication, and characterization of a new serial digital actuator, achieving an improvement in range-to-precision and range-to-voltage performance. We propose a weight-balanced design for the serial actuators with serpentine springs with a serial arrangement of unit digital actuators. We have measured the displacement range, precision, and drive voltage of unit and serial actuation at 1 Hz. The serial digital actuators produce a full-range displacement of $28.44 pm 0.02 muhbox{m}$ , accumulating unit displacements of $2.8 pm 0.5 muhbox{m}$ at an operating voltage of 4.47 $pm$ 0.07 V. In addition, the serial digital actuators that have a displacement precision of 37.94 $pm$ 6.26 nm do not accumulate the displacement errors of the unit actuators, i.e., 36.0 $pm$ 17.7 nm. We experimentally verify that the serial digital actuators achieve a range-to-squared-voltage ratio of 1.423 $muhbox{m/V}^{2}$ and a range-to-precision ratio of 749.6.$hfill$ [2009-0020]   相似文献   

12.
Two versions of microdischarge-based pressure sensors, which operate by measuring the change, with pressure, in the spatial current distribution of pulsed dc microdischarges, are reported. The inherently high temperatures of the ions and electrons in the microdischarges make these devices amenable to high-temperature operation. The first sensor type uses 3-D arrays of horizontal bulk metal electrodes embedded in quartz substrates with electrode diameters of 1–2 mm and 50–100-$muhbox{m}$ interelectrode spacing. These devices were operated in nitrogen over a range of 10–2000 torr, at temperatures as high as 1000 $^{circ}hbox{C}$. The maximum measured sensitivity was 5420 ppm/torr at the low end of the dynamic range and 500 ppm/torr at the high end, while the temperature coefficient of sensitivity ranged from $-$925 to $-$550 ppm/K. Sensors of the second type use planar electrodes and have active areas as small as 0.13 $hbox{mm}^{2}$. These devices, when tested in a chemical sensing system flowing helium as a carrier gas, had a maximum sensitivity of 9800 ppm/torr, a dynamic range of 25–200 torr, and a temperature coefficient of sensitivity of approximately $-$1412 ppm/K.$hfill$ [2008-0262]   相似文献   

13.
This technical note addresses the discrete-time Markov jump linear systems ${cal H}_{infty}$ filtering design problem. First, under the assumption that the Markov parameter is measurable, the main contribution is the linear matrix inequality (LMI) characterization of all linear filters such that the estimation error remains bounded by a given ${cal H}_{infty}$ norm level, yielding the complete solution of the mode-dependent filtering design problem. Based on this result, a robust filter design able to deal with polytopic uncertainty is considered. Second, from the same LMI characterization, a design procedure for mode-independent filtering is proposed. Some examples are solved for illustration and comparisons.   相似文献   

14.
This brief addresses the stability analysis problem for stochastic neural networks (SNNs) with discrete interval and distributed time-varying delays. The interval time-varying delay is assumed to satisfy $0≪d_{1}leq d(t) leq d_{2}$ and is described as $d(t)= d_{1}+h(t)$ with $0leq h(t) leq d_{2}-d_{1}$. Based on the idea of partitioning the lower bound $d_{1}$, new delay-dependent stability criteria are presented by constructing a novel Lyapunov–Krasovskii functional, which can guarantee the new stability conditions to be less conservative than those in the literature. The obtained results are formulated in the form of linear matrix inequalities (LMIs). Numerical examples are provided to illustrate the effectiveness and less conservatism of the developed results.   相似文献   

15.
This paper proposes a method for designing an ${cal H}_{infty}$ state-feedback fuzzy controller for discrete-time Takagi–Sugeno (T-S) fuzzy systems. To derive less conservative ${cal H}_{infty}$ stabilization conditions, this paper enhances the interactions among the fuzzy subsystems using a multiple Lyapunov function with quadratic dependence on fuzzy weighting functions. Besides, for more allocation of the nonlinearity to the fuzzy control system, this paper introduces a slack variable that is quadratically dependent on the one-step-past fuzzy weighting functions as well as the current ones. In the derivation, the ${cal H}_{infty}$ stabilization conditions are formulated in terms of parameterized linear matrix inequalities (PLMIs), which are reconverted into LMI conditions with the help of an efficient relaxation technique.   相似文献   

16.
This paper is concerned with the design, fabrication, and characterization of novel high-temperature silicon on insulator (SOI) microhotplates employing tungsten resistive heaters. Tungsten has a high operating temperature and good mechanical strength and is used as an interconnect in high temperature SOI-CMOS processes. These devices have been fabricated using a commercial SOI-CMOS process followed by a deep reactive ion etching (DRIE) back-etch step, offering low cost and circuit integration. In this paper, we report on the design of microhotplates with different diameters (560 and 300 $muhbox{m}$) together with 3-D electrothermal simulation in ANSYS, electrothermal characterization, and analytical analysis. Results show that these devices can operate at high temperatures (600 $^{circ}hbox{C}$ ) well beyond the typical junction temperatures of high temperature SOI ICs (225 $^{circ}hbox{C}$), have ultralow dc power consumption (12 mW at 600 $^{circ}hbox{C}$), fast transient time (as low as 2-ms rise time to 600 $^{circ}hbox{C}$), good thermal stability, and, more importantly, a high reproducibility both within a wafer and from wafer to wafer. We also report initial tests on the long-term stability of the tungsten heaters. We believe that this type of SOI microhotplate could be exploited commercially in fully integrated microcalorimetric or resistive gas sensors. $hfill$[2007-0275]   相似文献   

17.
A method for learning the distance of a sound source in a room is presented. The proposed method is based on short-time magnitude-squared coherence between the two channels of a binaural signal. Based on white noise as the training data, a coherence profile is obtained at each desired position in the room. These profiles can then be used to identify the most likely distance of a speech signal in the same room. The proposed approach is compared to a previous method for learning the position of a sound source. The results indicate that the both methods are able to identify the distance of a speech sound source correctly in a grid with 0.5-m spacing in most cases, when the orientation of the listener is 0$^{circ}$ , 30$^{circ}$ , 60$^{circ}$ , 90$^{circ}$ , or 180$^{circ}$ on the horizontal plane.   相似文献   

18.
In this paper, the thermal degradation of laterally operating thermal actuators made from electroplated nickel has been studied. The actuators investigated delivered a maximum displacement of ca. 20 $muhbox{m}$ at an average temperature of $sim!! 450 ,^{circ}hbox{C}$ , which is much lower than that of typical silicon-based microactuators. However, the magnitude of the displacement strongly depended on the frequency and voltage amplitude of the pulse signal applied. Back bending was observed at maximum temperatures as low as 240 $^{circ}hbox{C}$. Both forward and backward displacements increase as the applied power was increased up to a value of 60 mW; further increases led to reductions in the magnitudes of both displacements. Scanning electron microscopy clearly showed that the nickel beams began to deform and change their shape at this critical power level. Compressive stress is responsible for nickel pileup, while tensile stresses, generated upon removing the current, are responsible for necking at the hottest section of the hot arm of the device. Energy dispersive X-ray diffraction analysis also revealed the severe oxidation of Ni structure induced by Joule heating. The combination of plastic deformation and oxidation was responsible for the observed thermal degradation. Results indicate that nickel thermal microactuators should be operated below 200 $^{circ}hbox{C}$ to avoid thermal degradation.$hfill$[2009-0015]   相似文献   

19.
This paper describes different approaches to achieve high-performance microfabricated silicon-glass separation columns for microgas chromatography systems. The capillary width effect on the separation performance has been studied by characterization of 250-, 125-, 50-, and 25-$muhbox{m}$ -wide single-capillary columns (SCCs) fabricated on a $10 times 8 hbox{mm}^{2}$ die. The highest plate number (12 500/m), reported to date for MEMS-based silicon-glass columns, has been achieved by 25-$muhbox{m}$-wide columns coated by a thin layer of polydimethylsiloxane stationary phase using static coating technique. To address the low sample capacity of these narrow columns, this paper presents the first generation of MEMS-based “multicapillary” columns (MCCs) consisting of a bundle of narrow-width rectangular capillaries working in parallel. The theoretical model for the height-equivalent-to-a-theoretical-plate $(HETP)$ of rectangular MCCs has been developed, which relates the $HETP$ to the discrepancies of the widths and depths of the capillaries in the bundle. Two-, four-, and eight-capillary MCCs have been designed and fabricated to justify the separation ability of these columns. These MCCs capable of multicomponent gas separation provide a sample capacity as large as 200 ng compared to 5.5 ng for 25-$muhbox{m}$-wide SCCs.$hfillhbox{[2007-0309]}$   相似文献   

20.
On Kalman Filtering for Detectable Systems With Intermittent Observations   总被引:3,自引:0,他引:3  
We consider the problem of Kalman filtering when observations are available according to a Bernoulli process. It is known that there exists a critical probability $p_{c}$ such that, if measurements are available with probability greater than $p_{c}$, then the expected prediction covariance is bounded for all initial conditions; otherwise, it is unbounded for some initial conditions. We show that, when the system observation matrix restricted to the observable subspace is invertible, the known lower bound on $p_{c}$ is, in fact, the exact critical probability. This result is based on a novel decomposition of positive semidefinite matrices.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号