首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A number of factors impede the direct translation of fibre properties from plant crop species to natural fibre composites. Commercially available fibre extraction processes introduce defects and degrade the mechanical properties of fibres. This study reports on a novel image based approach for investigating the effect of fibre extraction processes on flax fibre bundle strength. X-ray micro Computed Tomography (μCT) was coupled with uniaxial tensile testing to measure the in-situ fibre bundle cross-section area and tensile strength in flax plant stems. The mean tensile strength result was 50% higher than that of the fibres extracted through the standard commercial process. To minimize fibre damage during fibre extraction, a pre-treatment was proposed via saturating flax plant stems in 35% aqueous ammonia solution. By environmental scanning electron microscopy (ESEM), it was evident that ammonia treatment significantly reduced the extent of damage in flax fibre knots and the optimum treatment parameter was identified.  相似文献   

2.
The mechanical behaviour of fabric-reinforced composites can be affected by several parameters, such as the properties of fabrics and matrix, the fibre content, the bond interphase and the anchorage ability of fabrics. In this study, the effects of the fibre type, the fabric geometry, the physical and mechanical properties of fabrics and the volume fraction of fibres on the tensile stress–strain response and crack propagation of cementitious composites reinforced with natural fabrics were studied. To further examine the properties of the fibres, mineral fibres (glass) were also used to study the tensile behaviour of glass fabric-reinforced composites and contrast the results with those obtained for the natural fabric-reinforced composites. Composite samples were manufactured by the hand lay-up moulding technique using one, two and three layers of flax and sisal fabric strips and a natural hydraulic lime (NHL) grouting mix. Considering fabric geometry and physical properties such as the mass per unit area and the linear density, the flax fabric provided better anchorage development than the sisal and glass fabrics in the cement-based composites. The fabric geometry and the volume fraction of fibres were the parameters that had the greatest effects on the tensile behaviour of these composite systems.  相似文献   

3.
Flax fibres are finding non-traditional applications as reinforcement of composite materials. The mechanical properties of fibres are affected by the natural variability in plant as well as the damage accumulated during processing, and thus have considerable variability that necessitates statistical treatment of fibre characteristics. The strength distribution of elementary flax fibres has been determined at several fibre lengths by standard tensile tests, and the amount of kink bands in the fibres evaluated by optical microscopy. Strength distribution function, based on the assumption that the presence of kink bands limits fibre strength, is derived and found to provide reasonable agreement with test results.  相似文献   

4.
Mechanical strength studies have been carried out on fibre bundles used in composite manufacturing. The variability in mechanical properties of glass fibres has been studied using bundles of about 2000 filaments. The fibre strength distributions were analysed using the survival probability-applied strain (Sε) curve, in relation with various experimental conditions. We also examine the effect of lubricant’s viscosity on the fracture behaviour of E-glass fibre bundles. Acoustic emission (AE) was monitored during the bundle tensile tests in order to verify that individual filament failures are statistically independent. On tensile tests with lubricated bundles of E-glass fibres, it is shown that each individual fibre break can be detected using AE. Hence, AE monitoring of a lubricated bundle of E-glass fibres provides a convenient and relatively quick method to obtain the Weibull parameters of strength distribution.  相似文献   

5.
Nowadays, natural fibres are used as a reinforcing material in polymer composites, owing to severe environmental concerns. Among many different types of natural resources, kenaf plants have been extensively exploited over the past few years. In this experimental study, partially eco-friendly hybrid composites were fabricated by using kenaf and glass fibres with two different fibre orientations of 0° and 90°. The mechanical properties such as tensile, flexural and impact strengths of these composites have been evaluated. From the experiment, it was observed that the composites with the 0° fibre orientation can withstand the maximum tensile strength of 49.27 MPa, flexural strength of 164.35 MPa, and impact strength of 6 J. Whereas, the composites with the 90° fibre orientation hold the maximum tensile strength of 69.86 MPa, flexural strength of 162.566 MPa and impact strength of 6.66 J. The finite element analysis was carried out to analyse the elastic behaviour of the composites and to predict the mechanical properties by using NX Nastran 9.0 software. The experimental results were compared with the predicted values and a high correlation between the results was observed. The morphology of the fractured surfaces of the composites was analysed using a scanning electron microscopy analysis. The results indicated that the properties were in the increasing trend and comparable with pure synthetic fibre reinforced composites, which shows the potential for hybridization of kenaf fibre with glass fibre.  相似文献   

6.
Carbon fibres are particularly well suited for use in a multifunctional lightweight design of a structural composite material able to store energy as a lithium-ion battery. The fibres will in this case act as both a high performance structural reinforcement and one of the battery electrodes. However, the electrochemical cycling consists of insertions and extractions of lithium ions in the microstructure of carbon fibres and its impact on the mechanical performance is unknown. This study investigates the changes in the tensile properties of carbon fibres after they have been subjected to a number of electrochemical cycles. Consistent carbon fibre specimens were manufactured with polyacrylonitrile-based carbon fibres. Sized T800H and desized IMS65 were selected for their mechanical properties and electrochemical capacities. At the first lithiation the ultimate tensile strength of the fibres was reduced of about 20% but after the first delithiation some strength was recovered. The losses and recoveries of strength remained unchanged with the number of cycles as long as the cell capacity remained reversible. Losses in the cell capacity after 1000 cycles were measured together with smaller losses in the tensile strength of the lithiated fibres. These results show that electrochemical cycling does not degrade the tensile properties which seem to depend on the amount of lithium ions inserted and extracted. Both fibre grades exhibited the same trends of results. The tensile stiffness was not affected by the cycling. Field emission scanning electron microscope images taken after electrochemical cycling did not show any obvious damage of the outer surface of the fibres.  相似文献   

7.
The aim of this paper is to examine the use of artichoke fibres as potential reinforcement in polymer composites. The fibres are extracted from the stem of artichoke plant, which grows in Southern Sicily. In order to use these lignocellulosic fibres as potential reinforcement in polymer composites, it is fundamental to investigate their microstructure, chemical composition and mechanical properties.Therefore, the morphology of artichoke fibres was investigated through electron microscopy, the thermal behaviour through thermogravimetric analysis and the real density through a helium pycnometer. The chemical composition of the natural fibres in terms of cellulose, lignin, and ash contents was determinated by using standard test methods.Finally, the mechanical characterization was carried out through single fibre tensile tests, analysing the results through statistical analysis.  相似文献   

8.
Natural fibre-reinforced polymers can exhibit very different mechanical performances and environmental aging resistances depending on their interphase properties, but most studies have been focused on fibre surface treatment. Here, investigations of the effect of maleic anhydride grafted polypropylene (MAHgPP) coupling agents on the properties of jute fibre/polypropylene (PP) composites have been considered with two kinds of matrices (PP1 and PP2). Both mechanical behaviour of random short fibre composites and micro-mechanical properties of single fibre model composites were examined. Taking into account interfacial properties, a modified rule of mixture (ROM) theory is formulated which fits well to the experimental results. The addition of 2 wt% MAHgPP to polypropylene matrices can significantly improve the adhesion strength with jute fibres and in turn the mechanical properties of composites. We found that the intrinsic tensile properties of jute fibre are proportional to the fibre’s cross-sectional area, which is associated with its perfect circle shape, suggesting the jute fibre’s special statistical tensile properties. We also characterised the hydrophilic character of natural fibres and, moreover, humidity environmental aging effects. The theoretical results are found to coincide fairly well with the experimental data and the major reason of composite tensile strength increase in humidity aging conditions can be attributed to both improved polymer–matrix and interfacial adhesion strength.  相似文献   

9.
Cellulose and abaca fibre reinforced polyoxymethylene (POM) composites were fabricated using an extrusion coating (double screw) compounding followed by injection moulding. The long cellulose or abaca fibres were dried online with an infrared dryer and impregnated fibre in matrix material by using a special extrusion die. The fibre loading in composites was 30 wt.%. The tensile properties, flexural properties, Charpy impact strength, falling weight impact strength, heat deflection temperature and dynamic mechanical properties were investigated for those composites. The fibre pull-outs, fibre matrix adhesion and cracks in composites were investigated by using scanning electron microscopy. It was observed that the tensile strength of composites was found to reduce by 18% for abaca fibre and increase by 90% for cellulose fibre in comparison to control POM. The flexural strength of composites was found to increase by 39% for abaca fibre and by 144% for cellulose fibre. Due to addition of abaca or cellulose fibre both modulus properties were found to increase 2-fold. The notched Charpy impact strength of cellulose fibre composites was 6-fold higher than that of control POM. The maximum impact resistance force was shorted out for cellulose fibre composites. The heat deflection temperature of abaca and cellulose fibre composites was observed to be 50 °C and 63 °C higher than for control POM respectively.  相似文献   

10.
In recent years, the use of flax fibres as reinforcement in composites has gained popularity due to an increasing requirement for developing sustainable materials. Flax fibres are cost-effective and offer specific mechanical properties comparable to those of glass fibres. Composites made of flax fibres with thermoplastic, thermoset, and biodegradable matrices have exhibited good mechanical properties. This review presents a summary of recent developments of flax fibre and its composites. Firstly, the fibre structure, mechanical properties, cost, the effect of various parameters (i.e. relative humidity, various physical/chemical treatments, gauge length, fibre diameter, fibre location in a stem, oleaginous, mechanical defects such as kink bands) on tensile properties of flax fibre have been reviewed. Secondly, the effect of fibre configuration (i.e. in forms of fabric, mat, yarn, roving and monofilament), manufacturing processes, fibre volume, and fibre/matrix interface parameters on the mechanical properties of flax fibre reinforced composites have been reviewed. Next, the studies of life cycle assessment and durability investigation of flax fibre reinforced composites have been reviewed.  相似文献   

11.
Lack of resources and increasing environmental pollution has evoked great interest in the research of materials that are friendly to our health and environment. Polymer composites fabricated from natural fibres is currently the most promising area in polymer science. Keeping in view the various advantages of natural fibres, in current series of green composites a study on natural fibre reinforced polymer composites has been made. This paper presents the results of an experimental series designed to assess the possibility of Pine needles as reinforcing material in polymer composites. First of all, urea-formaldehyde resin was synthesized and optimized by evaluating its mechanical properties. Optimized resin was reinforced with employing Pine needles of different dimensions such as particle reinforcement, short fibre reinforcement and long fibre reinforcement. Experimental results obtained shows that mechanical properties such as tensile strength, compressive strength and wear resistance of UF resin increases to a considerable extent when reinforced with Pine needles. Further it has been observed that particle reinforcement is more effective as compared to short fibre and long fibre reinforcement. These results suggest that Pine needles can be potential candidates for use in natural fibre reinforced polymer composites. Thermal and morphological studies of these composites have also been carried out.  相似文献   

12.
Model polymer composites containing carbon nanotube (CNT) grafted fibres provide a means to investigate the influence of nanostructures on interfacial properties. Well-aligned nanotubes, with controllable length, were grown on silica fibres by using the injection chemical vapour deposition method, leading to a significant increase of the fibre surface area. In single fibre tensile tests, this CNT growth reaction reduced the fibre strength, apparently due to catalyst etching; however, the fibre modulus increased significantly. Contact angle measurements, using the drop-on-fibre method, indicated an excellent wettability of the CNT-grafted fibres by poly(methyl methacrylate) (PMMA). PMMA model composites were fabricated and studied using the single fibre fragmentation tests. A dramatic improvement (up to 150%) of the apparent interfacial shear strength (IFSS) was obtained for the composites containing CNT-grafted fibres. The improvement of IFSS was also influenced by the length and morphology of the grafted CNTs.  相似文献   

13.
Bamboo fibre reinforced composites are not fully utilised due to the limited understanding on their mechanical characteristics. In this paper, the effects of alkali treatment and elevated temperature on the mechanical properties of bamboo fibre reinforced polyester composites were investigated. Laminates were fabricated using untreated and sodium hydroxide (NaOH) treated (4–8% by weight) randomly oriented bamboo fibres and tested at room and elevated temperature (40, 80 and 120 °C). An improvement in the mechanical properties of the composites was achieved with treatment of the bamboo fibres. An NaOH concentration of 6% was found optimum and resulted in the best mechanical properties. The bending, tensile and compressive strength as well as the stiffness of this composite are 7, 10, 81, and 25%, respectively higher than the untreated composites. When tested up to 80 °C, the flexural and tensile strength are enhanced but the bending stiffness and compressive strength decreased as these latter properties are governed by the behaviour of resin. At 40 and 80 °C, the bond between the untreated fibres and polyester is comparable to that of treated fibres and polyester which resulted in almost same mechanical properties. However, a significant decrease in all mechanical properties was observed for composites tested at 120 °C.  相似文献   

14.
Moisture absorption and durability in water environment are major concerns for natural fibres as reinforcement in composites. This paper presents a study on the influence of water ageing on mechanical properties and damage events of flax–fibre composites, compared with glass–fibre composites. The effects of the immersion treatment on the tensile characteristics, water absorption and acoustic emission (AE) recording were investigated. The water absorption results for the flax–fibre composites show that the evolution appears to be Fickian and the saturated weight gain is 12 times as high that the glass–fibre composites. Decreasing continuously with increasing water immersion time, the tensile modulus and the failure strain of flax–fibre composites are hardly affected by water ageing whereas only the tensile stress is reduced regarding the glass–fibre composites. AE indicate that matrix–fibres interface weakening is the main damage mechanism induced by water ageing for both composites.  相似文献   

15.
This study investigates the influence of the physical structure of flax fibres on the mechanical properties of polypropylene (PP) composites. Due to their composite-like structure, flax fibres have relatively weak lateral bonds which are in particular present in flax fibres that are often used in natural fibre mat reinforced thermoplastics (NMT). These weak bonds can be partly removed by combing the fibres. In order to study the influence of the physical structure of flax fibres on NMT tensile and flexural properties, uncombed and combed flax fibre reinforced PP composites were manufactured via a wet laid process. The influence of improved fibre-matrix adhesion was studied using maleic-anhydride grafted PP. Results indicated that the flax physical structure has a significant effect on flax-PP composite properties and that the flax fibre reinforced PP properties are similar to values predicted with existing micromechanical models. The tensile modulus of flax-PP composites can fairly compete with commercial glass mat reinforced thermoplastic (GMT) modulus, the strength, however, both tensile and flexural, can not. In order to rise the strength of flax fibre reinforced PP composites to the level of GMT strength, the flax fibres have to be further isolated to elementary flax fibres.  相似文献   

16.
Mechanical properties of aligned long harakeke fibre reinforced epoxy with different fibre contents were evaluated. Addition of fibre was found to enhance tensile properties of epoxy; tensile strength and Young’s modulus increased with increasing content of harakeke fibre up to 223 MPa at a fibre content of 55 wt% and 17 GPa at a fibre content of 63 wt%, respectively. The flexural strength and flexural modulus increased to a maximum of 223 MPa and 14 GPa, respectively, as the fibre content increased up to 49 wt% with no further increase with increased fibre content. The Rule of Mixtures based model for estimating tensile strength of aligned long fibre composites was also developed assuming composite failure occurred as a consequence of the fracture of the lowest failure strain fibres taking account porosity of composites. The model was shown to have good accuracy for predicting the strength of aligned long natural fibre composites.  相似文献   

17.
The study reports mechanical performance of the recycled glass fibres produced from a water-based solvolysis technology, known as the hydrolysis process. The chemical reaction was carried out using sub-critical water to dissolve polyester resin and recover the glass fibres from composites. The effect of temperatures, times, catalyst and water amount on mechanical properties of the recovered glass fibres were investigated. Scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and time-of flight secondary ion mass spectroscopy (ToF-SIMS) analyses were also employed to examine the fibre surface associated with the polyester resin eliminated level after the hydrolysis reaction. The results revealed that by carefully adjusting the hydrolysis parameters the tensile strength and failure strain of the recycled fibres decrease by approximately 40-70% in comparison with virgin fibres while Young’s moduli remain similar. The relationship between the hydrolysis conditions, recovered fibres and mechanical performance was discussed in this study.  相似文献   

18.
Abaca fibre reinforced PP composites were prepared using a high speed mixer followed by injection moulding with 30 wt.% of fibre load. Prior to composite production, the fibres were modified by fungamix and natural enzyme. The effects of modification of the fibre were assessed on the basis of morphology and thermal resistance and as well as on mechanical, thermal and environmental stress corrosion resistance properties of the resulting composites. Coupling agent (MA-PP) was also used with unmodified abaca fibre to observe the coupling agent effect on resulting composites properties. The moisture absorption of the composites was found to be reduced 20–45% due to modification. Tensile strength found to be 5–45% and flexural strengths found to be 10–35% increased due to modification. Modified fibre composites found to better resistance in acid and base medium.  相似文献   

19.
《Composites》1994,25(10):945-952
An investigation of the behaviour of steel reinforcing fibres in a cement-based composite inclined to the direction of tensile load was carried out. Steel fibres with widely differing fibre parameters were tested and a new fibre characteristic, the inclined tensile strength (its), was identified. It was observed that the value of the its decreased with increasing inclination angle but the decrease varied according to the type of fibre. The ultimate tensile force sustained by the inclined fibres depended also on the magnitude of the strain. It indicated that for some types of fibre the properties of a randomly reinforced fibre composite after the first crack depended much more on the inclined fibres and their its than on the fibres aligned to the principal stress.  相似文献   

20.
We report that a prestressing technique similar to that traditionally used in prestressed concrete can improve the mechanical performance of flax fibre spun yarn reinforced polymer-matrix composites. Prestressing a low twist yarn not only introduces tension to the constituent fibres and compressive stress to the matrix similar as in prestressed concretes, but also causes changes to the yarn structure that lead to the rearrangement of fibres within the yarn. Prestressing increases the fibre packing density in yarn, causes fibre straightening, and reduces fibre obliquity in yarn (improved fibre alignment along yarn axis). All these changes contribute positively to the mechanical properties of the natural fibre yarn reinforced composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号