首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The polymer composites composed of graphene foam (GF), graphene sheets (GSs) and pliable polydimethylsiloxane (PDMS) were fabricated and their thermal properties were investigated. Due to the unique interconnected structure of GF, the thermal conductivity of GF/PDMS composite reaches 0.56 W m−1 K−1, which is about 300% that of pure PDMS, and 20% higher than that of GS/PDMS composite with the same graphene loading of 0.7 wt%. Its coefficient of thermal expansion is (80–137) × 10−6/K within 25–150 °C, much lower than those of GS/PDMS composite and pure PDMS. In addition, it also shows superior thermal and dimensional stability. All above results demonstrate that the GF/PDMS composite is a good candidate for thermal interface materials, which could be applied in the thermal management of electronic devices, etc.  相似文献   

2.
This work prepares (3-aminopropyl) trimethoxysilane (APTMS)-functionalized reduced graphene oxide (APTMS-rGO)/polyimide (PI) composite (APTMS-rGO/PI) through in-situ polymerization. NH2-functionalized rGO coupled by APTMS demonstrates the good reinforced efficiency in mechanical and thermal properties, which is ascribed to the covalent-functionalized PI matrix by APTMS-rGO sheets. The uniform dispersion of APTMS-rGO increases the glass transition temperature (Tg) and the thermal decomposition temperature (Td), exhibiting 21.7 °C and 44 °C improvements, respectively. The tensile strength of the composites with 0.3 wt% APTMS-rGO is 31% higher than that of neat PI, and Young’s modulus is 35% higher than that of neat PI. Raman spectroscopy show the obvious G band shift, and also clearly demonstrates the enhanced interfacial interaction between rGO nanofillers and PI matrix. The high mechanical property of the APTMS-rGO/PI composites is attributed to the covalent functionalized GO by NH2 groups and its good dispersion in comparison with GO.  相似文献   

3.
The effect of fiber loading on the properties of treated cellulose fiber-reinforced phenolic composites was evaluated. Alkali treatment of the fibers and reaction with organosilanes as coupling agents were applied to improve fiber–matrix adhesion. Fiber loadings of 1, 3, 5, and 7 wt% were incorporated to the phenolic matrix and tensile, flexural, morphological and thermal properties of the resulting composites were studied. In general, mechanical properties of the composites showed a maximum at 3% of fiber loading and a uniform distribution of the fibers in such composites was observed. Silane treatment of the fibers provided derived composites with the best thermal and mechanical properties. Meanwhile, NaOH treatment improved thermal and flexural properties, but reduced tensile properties of the materials. Therefore, the phenolic composite containing 3% of silane treated cellulose fiber was selected as the material with optimal properties.  相似文献   

4.
The thermal behavior of hemp-poly lactic acid composites with both untreated and chemically surface modified hemp fiber was characterized by means of activation energy of thermal degradation. Three chemical surface modification employed were; alkali, silane and acetic anhydride. Model-free isoconversion Flynn–Wall–Ozawa method was chosen to evaluate the activation energy of composites. The results indicated that composites prepared with acetic anhydride modified hemp had 10–13% higher activation energy compared to other composites. Further, among the three surface modifications, acetic anhydride resulted in higher activation energy (159–163 kJ/mol). Fourier transform infrared spectroscopy supported the findings of thermogravimetric analysis results, wherein surface functionalization changes were observed as a result of surface modification of hemp fiber. It was concluded that, higher bond energy results in higher activation energy, which improves thermal stability. The activation energy data can aid in better understanding of the thermal degradation behavior of composites as a function of composite processing.  相似文献   

5.
The polystyrene (PS) macromolecular chains were grafted on the surface of graphene layers by reversible addition-fragmentation chain transfer (RAFT) polymerization. In this procedure, a RAFT agent, 4-Cyano-4-[(dodecylsulfanylthiocarbonyl) sulfanyl] pentanoic acid, was used to functionalize the thermal reduced graphene oxide (TRGO) to obtain the precursor (TRGO-RAFT). It can be calculated that the grafting density of PS/graphene (PRG) composites was about 0.18 chains per 100 carbons. Successful in-plain attachment of RAFT agent to TRGO and PS chain to TRGO-RAFT was shown an influence on the thermal property of the PRG composites. The thermal conductivity (λ) improved from 0.150 W m−1 K−1 of neat PS to 0.250 W m−1 K−1 of PRG composites with 10 wt% graphene sheets loading. The thermal property of PRG composites increased due to the homogeneous dispersion and ordered arrangement of graphene sheets in PS matrix and the formation of PRG composites.  相似文献   

6.
The multi-step MW reduction technique was developed in this study to obtain reduced graphene oxides; EG, RGO-1, and RGO-2 with MW irradiation time of 1, 2, and 3 min, respectively. Results of TGA, IR, and elemental analysis demonstrated that the degree of reduction of GO increased with increasing the MW irradiation time. Overall, 3 min of MW irradiation of GO in 3 steps was sufficient to obtain highly reduced GO (C/O ratio 10.38 by elemental analysis). The electrical percolation threshold of composites was observed as 1 wt% and 0.3 wt% for RGO-1 and RGO-2, respectively. Even at 0.5 wt% loading of RGO-2 in epoxy, the Tg value of the composite increased by 10 °C, indicating a strong interfacial interaction between graphene and epoxy resin.  相似文献   

7.
BN filler was added to a liquid crystalline (LC) epoxy resin to obtain a high thermal conductive material. The LC epoxy/BN composites, which were cured at different temperatures, formed an isotropic or LC polydomain phase structure. The relationship between the network orientation containing mesogenic groups and the dispersibility of the BN filler was discussed. As a result, the thermal conductivity of the LC polydomain system was drastically enhanced even at a relatively low volume fraction of BN (30 vol%), regardless of the fact that both the LC and isotropic phase systems consisted of the same resin and filler content combination. This result is due to the formation of thermal conductive paths by the BN filler by exclusion of the BN filler from the LC domain formed during the curing process in the composite having the LC polydomain matrix.  相似文献   

8.
New composites with high dielectric constant and low dielectric loss, based on expanded graphite (EG), CaCuTi4O12 (sCCTO) and cyanate ester (CE) resin, were developed by controlling the interaction between EG and sCCTO. Difference from EG, surface modified EG (mEG) has an additional strong chemical interaction with sCCTO, this not only improves the dispersion of fillers, but also enhances the filler-matrix interfacial adhesion, leading to different micro-structures and dielectric properties. Specifically, the percolation thresholds of mEG/sCCTO/CE and EG/sCCTO/CE composites are 3.45 vol% and 2.86 vol%, respectively. When the loading of conductors approaches the percolation threshold, mEG/sCCTO/CE composite has much higher dielectric constant and lower dielectric loss than EG/sCCTO/CE composite. The nature behind these attractive data was revealed by building an equivalent circuit.  相似文献   

9.
In this work, the compressive mechanical properties, thermal stability and morphology of cellulose fiber-reinforced phenolic foams were studied. The cellulose fiber-reinforced phenolic foam showed the greatest compressive mechanical properties by incorporating 2 wt.% of the reinforcement. The compressive modulus and strength of 2 wt.% cellulose fiber-reinforced phenolic foam were increased by 21% and 18%, respectively, relative to the unreinforced material. The addition of the cellulose fibers to the phenolic foam slightly decreased the thermal stability of the material. The study on the morphology of the cellulose-reinforced phenolic foams via Scanning electron microscopy (SEM) indicated a strong bonding between the fibers and phenolic matrix. In addition, the incorporation of the cellulose fibers into the foam resulted in a decreased cell size and increased cell density of the material. The incorporation of 2 wt.% of cellulose fibers into the phenolic foam led to obtain the material with the best features.  相似文献   

10.
Aluminum oxide and aluminum nitride with different sizes were used alone or in combination to prepare thermally conductive polymer composites. The composites were categorized into two systems, one including composites filled with large-sized aluminum nitride and small-sized aluminum oxide particles, and the other including composites filled with large-sized aluminum oxide and small-sized aluminum nitride. The use of these hybrid fillers was found to be effective for increasing the thermal conductivity of the composite, which was probably due to the enhanced connectivity offered by the structuring filler. At a total filler content of 58.4 vol.%, the maximum values of both thermal conductivities in the two systems were 3.402 W/mK and 2.842 W/mK, respectively, when the volume ratio of large particles to small particles was 7:3. This result was represented when the composite was filled with the maximum packing density and the minimum surface area at the same volume content. As such, the proposed thermal model predicted thermal conductivity in good agreement with experimental values.  相似文献   

11.
The effect of ZrSi2 on the thermal degradation behavior of phenolic and the role of ZrSi2 on the ablation resistance of carbon–phenolic (C–Ph) composites are investigated by introducing ZrSi2 particles into phenolic, and then ZrSi2 particles into C–Ph composites. Thermogravimetry (TG) analysis illustrates that the residue yield of phenolic at high temperatures is increased by the introduction of ZrSi2 particles. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses reveal that the increased residue yield is attributed to the reactions between ZrSi2 particles and pyrolysis volatiles. Therefore, partial carbon and oxygen elements in the volatiles remain in the thermal residue in the forms of amorphous carbon, ZrO2 and SiO2, respectively. Moreover, the ablation resistance of C–Ph composites is significantly improved by the introduction of ZrSi2 particles with formation ZrO2 and SiO2 during the oxygen–acetylene ablation process. The average linear and mass ablation rates of ZrSi2 modified carbon–phenolic (Z/C–Ph) composites evidently reduce by comparison with those of C–Ph composites under similar conditions. As depicted in the microstructure, the ablation occurs in volume in C–Ph composites. The oxygen-containing molecules penetrate deeply inside the matrix, thus the ablation by oxidation is accelerated. However, the ablation occurs in surface in Z/C–Ph composites. ZrSi2 reacts with the oxygen-containing molecules to form SiO2–ZrO2 layer and molten SiO2 cover on the ablated surface, thus the ablation by the oxidation of matrix and fibers in the interior has been inhibited.  相似文献   

12.
In this study, graphene nanoplatelets (0.10, 0.25, and 0.50 wt.%) were loaded into cellulose matrix to improve electroactive performance of cellulose-based composite actuators. Firstly, cellulosic films were produced by dissolving microcrystalline cellulose in 1-butyl-3-methylimidazolium chloride. Afterwards, graphene loaded cellulosic films were fabricated and gold leaf was coated on both surfaces of graphene loaded cellulose-based films. The changes in crystallographic properties and chemical functional groups of cellulose were investigated by X-ray diffraction and Fourier transform infrared analyses, respectively. Besides, thermal stability, electrical conductivity, and morphological properties of the films were examined by thermogravimetric analysis, electrical conductivity measurement, and scanning electron microscopy, respectively. The tensile strength and the Young's modulus of the films and actuators were also determined by tensile tests. The electroactive characteristics were analyzed under DC excitation voltages of 3 V, 5 V and 7 V. The time responses were evaluated via proposed experimental data based model. The performances of the actuators were compared in terms of maximum tip displacement, minimum tip displacement and time constant.  相似文献   

13.
The hybrid filler of hollow glass microspheres (HGM) and nitride particles was filled into low-density polyethylene (LDPE) matrix via powder mixing and then hot pressing technology to obtain the composites with higher thermal conductivity as well as lower dielectric constant (Dk) and loss (Df). The effects of surface modification of nitride particles and HGMs as well as volume ratio between them on the thermal conductivity and dielectric properties at 1 MHz of the composites were first investigated. The results indicate that the surface modification of the filler has a beneficial effect on thermal conductivity and dielectric properties of the composites due to the good interfacial adhesion between the filler and matrix. An optimal volume ratio of nitride particles to HGMs of 1:1 is determined on the basis of overall performance of the composites. The thermal conductivity as well as dielectric properties at 1 MHz and microwave frequency of the composites made from surface-modified fillers with the optimal nitride to HGM volume ratio were investigated as a function of the total volume fraction of hybrid filler. It is found that the thermal conductivity increases with filler volume fraction, and it is mainly related to the type of nitride particle other than HGM. The Dk values at 1 MHz and microwave frequency show an increasing trend with filler volume fraction and depend largely on the types of both nitride particles and HGMs. The Df values at 1 MHz or quality factor (Q × f) at microwave frequency show an increasing or decreasing trend with filler volume fraction and also depend on the types of both nitride particle and HGM. Finally, optimal type of HGM and nitride particles as well as corresponding thermal conductivity and dielectric properties is obtained. SEM observations show that the hybrid filler particles are agglomerated around the LDPE matrix particles, and within the agglomerates the smaller-sized nitride particles in the hybrid filler can easily form thermally conductive networks to make the composites with high thermal conductivity. At the same time, the increase of the value Dk of the composites is restricted due to the presence of HGMs.  相似文献   

14.
Tetrapod-shaped zinc oxide (T-ZnO) whiskers and boron nitride (BN) flakes were employed to improve the thermal conductivity of phenolic formaldehyde resin (PF). A striking synergistic effect on thermal conductivity of PF was achieved. The in-plane thermal conductivity of the PF composite is as high as 1.96 W m−1 K−1 with 30 wt.% BN and 30 wt.% T-ZnO, which is 6.8 times higher than that of neat PF, while its electrical insulation is maintained. With 30 wt.% BN and 30 wt.% T-ZnO, the flexural strength of the composite is 312.9% higher than that of neat PF, and 56.2% higher that of the PF composite with 60 wt.% BN. The elongation at break is also improved by 51.8% in comparison with that of the composite with 60 wt.% BN. Such a synergistic effect results from the bridging of T-ZnO whiskers between BN flakes facilitating the formation of effective thermal conductance network within PF matrix.  相似文献   

15.
Three metal hydroxide nanorods (MHR) with uniform diameters were synthesized, and then combined with graphene nanosheets (GNS) to prepare acrylonitrile–butadiene–styrene (ABS) copolymer composites. An excellent dispersion of exfoliated two-dimensional (2-D) GNS and 1-D MHR in the ABS matrix was achieved. The effects of combined GNS and MHR on the mechanical, thermal and flame retardant properties of the ABS composites were investigated. With the addition of 2 wt% GNS and 4 wt% Co(OH)2, the tensile strength, bending strength and storage modulus of the ABS composites were increased by 45.1%, 40.5% and 42.3% respectively. The ABS/GNS/Co(OH)2 ternary composite shows the lowest maximum weight loss rate and highest residue yield. Noticeable reduction in the flammability was achieved with the addition of GNS and Co(OH)2, due to the formation of more continuous and compact charred layers that retarded the mass and heat transfer between the flame and the polymer matrix.  相似文献   

16.
Poly(styrene-co-acrylonitrile) (SAN) was used to modify diglycidyl ether of bisphenol-A (DGEBA) type epoxy resin cured with diamino diphenyl sulfone (DDS) and the modified epoxy resin was used as the matrix for fibre reinforced composites (FRPs) in order to get improved mechanical and thermal properties. E-glass fibre was used as the fibre reinforcement. The morphology, dynamic mechanical and thermal characteristics of the systems were analyzed. Morphological analysis revealed heterogeneous dispersed morphology. There was good adhesion between the matrix polymer and the glass fibre. The dynamic moduli, mechanical loss and damping behaviour as a function of temperature of the systems were studied using dynamic mechanical analysis (DMA). DMA studies showed that DDS cured epoxy resin/SAN/glass fibre composite systems have two Tgs corresponding to epoxy rich and SAN rich phases. The effect of thermoplastic modification and fibre loading on the dynamic mechanical properties of the composites were also analyzed. Thermogravimetric analysis (TGA) revealed the superior thermal stability of composite system.  相似文献   

17.
The effect of adding graphene in epoxy containing either an additive (MP) or reactive-type (DOPO) flame retardant on the thermal, mechanical and flammability properties of glass fiber-reinforced epoxy composites was investigated using thermal analysis; flexural, impact, tensile tests; cone calorimetry and UL-94 techniques. The addition of MP or DOPO to epoxy had a thermal destabilization effect below 400 °C, but led to higher char yield at higher temperatures. The inclusion of 10 wt% flame retardants slightly decreased the mechanical behavior, which was attributed to the poor interfacial interactions in case of MP or the decreased cross-linking density in case of DOPO flame retarded resin. The additional graphene presence increased flexural and impact properties, but slightly decreased tensile performance. Adding graphene further decreased the PHRR, THR and burning rate due to its good barrier effect. The improved fire retardancy was mainly attributed to the reduced release of the combustible gas products.  相似文献   

18.
Interface control and dispersion of graphene base nanomaterials in polymer matrix are challenging to develop high comprehensive nanocomposites due to their strong interlayer cohesive energy and chemical inertia. In this research, an efficient approach is presented to functionalize reduced graphene oxide nanosheets by N-[3-(trimethoxylsilyl)propyl]ethylenediamine, which is dispersed into polyacrylonitrile to prepare N-[3-(trimethoxylsilyl)propyl]ethylenediamine – reduced graphene oxide/polyacrylonitrile nanocomposites. A thermogravimetric analysis technique was employed to evaluate thermal properties of the nanocomposites. The tribological properties of the polyacrylonitrile/graphene nanocomposites were investigated. The morphologies and volume of the worn surface were examined using a 3D profilometer. The impact of loading ratio on friction coefficient, carry-bearing capacity and durability were studied. The N-[3-(trimethoxylsilyl)propyl]ethylenediamine – reduced graphene oxide/polyacrylonitrile nanocomposite with appropriate loading ratio of reduced graphene oxide exhibited a high load-bearing capacity and durability. Therefore, the polyacrylonitrile/graphene nanocomposite shows promising potential to industrial applications involving the lubrication and anti-wear.  相似文献   

19.
In the present study, graphene nanoribbon was prepared through unzipping the multi walled carbon nanotubes, and its reinforcing effect as a filler to the silicone rubber was further investigated. The results showed that carbon nanotubes could be unzipped to graphene nanoribbon using strong oxidants like potassium permanganate and sulfuric acid. The prepared graphene nanoribbon could homogeneously disperse within silicone rubber matrix using a simple solution mixing approach. It was also found from the thermogravimetric analysis curves that the thermal stability of the graphene nanoribbon filled silicone rubber nanocomposites improved compared to the pristine silicone rubber. Besides, with the incorporation of the nanofiller, the mechanical properties of the resulting nanocomposites were significantly enhanced, in which both the tensile stress and Young’s modulus increased by 67% and 93% respectively when the mass content of the graphene nanoribbon was 2.0 wt%. Thus it could be expected that graphene nanoribbon had large potentials to be applied as the reinforcing filler to fabricate polymers with increased the thermal and mechanical properties.  相似文献   

20.
With the aim of develop new materials for active food packaging, composites of low-density polyethylene (LDPE) with chitosan (CS) or chitosan sodium montmorillonite clay nanocomposites (CSnano), with or without Irganox 1076 commercial synthetic antioxidant or vitamin E (VE) as natural antioxidant were prepared by melt processing. The obtained materials have been characterized by processing behavior, mechanical and thermal properties, positive groups determination, atomic force microscopy and standard tests to assess antimicrobial and antioxidant activities. The compositions assuring insignificant decrease in mechanical and thermal properties were selected as LDPE/3CSnano/VE and LDPE/6CSnano/VE. It has been shown the chitosan imparts antimicrobial properties to LDPE films while the vitamin E increased the oxidation induction period, especially for materials containing chitosan nanocomposites. The incorporation of both chitosan nanocomposites and vitamin E in polyethylene gave films with good antimicrobial and thermal properties because of significant increase of charge surface and important changes in surface topology and antimicrobial activity because of a synergistic effect. The nanocomposites cannot only passively protect the food against environmental factors, but they may enhance shelf life of food products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号