首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wrinkling is one of the most common flaws that occur during textile composite reinforcement forming processes. These wrinkles are frequent because of the possible relative motion of fibres making up the reinforcement, leading to a very weak textile bending stiffness. It is necessary to simulate their onset but also their growth and their shape in order to verify that they do not extend to the useful part of the preform. In this paper the simulation of textile composite reinforcement forming and wrinkling is based on a simplified form of virtual internal work defined according to tensions, in-plane shear and bending moments on a unit woven cell. The role of the three rigidities (tensile, in-plane shear and bending) in wrinkling simulations is analysed. If in-plane shear stiffness plays a main role for onset of wrinkles in double-curved shape forming, there is no direct relation between shear angle and wrinkling. Wrinkling is a global phenomenon depending on all strains and stiffnesses and on boundary conditions. The bending stiffness mainly determines the shape of the wrinkles and it is not possible to perform a wrinkle simulation using a membrane approach.  相似文献   

2.
In this paper, the formability of a single layer E-glass non-crimp 3D orthogonal woven reinforcement (commercialized under trademark 3WEAVE® by 3Tex Inc.) is experimentally investigated. The study involves the forming process of the 3D fabric on two complex moulds, namely tetrahedron and double-dome. The tests are assisted by 3D digital image correlation measurement to have a continuous registration of the fabric local deformation. Moreover, the results of bending tests in warp and weft direction are detailed to enlarge the mechanical properties data set of the 3D reinforcement, necessary for understanding its deformability capacities in forming processes. The elevated bending stiffness of the 3D fabric means that use of a blank-holder during forming is not required. The reinforcement has a good drapability and it is able to form complex shapes without defects (wrinkles and fibre distortions). The collected experimental results represent an important dataset for numerical simulations of any complex shape with the considered 3D fabric composite reinforcement.  相似文献   

3.
《Composites Part B》2013,45(1):231-241
Transverse compaction of textile composite reinforcements is an important deformation mode arising during composite forming and manufacture. The mesoscopic simulations of the transverse compression of textile preforms presented in this paper are based on 3D FE models of each yarn in contact with friction with its neighbours. A hypoelastic model based on the fibre rotation depicts the mechanical behaviour of the yarn. The compression responses of several layer stacks with parallel or different orientations are computed. The numerical simulations show good agreement when compared to compaction experiments. The mesoscopic simulations can be used as virtual compression tests. In addition they determine the internal geometry of the reinforcement after compaction. The internal geometry can be used to compute the permeability of the deformed reinforcement and to calculate the homogenised mechanical properties of the final composite part.  相似文献   

4.
A triangular shell element for the simulation of textile composite reinforcements forming is proposed. This element is made up of unit woven cells. The internal virtual works are added on all woven cells of the element. They depend on tensions, in‐plane shear and bending moments that are directly those given by the experimental tests that are specific to textile composite reinforcement. The element has only displacement degrees of freedom; the bending curvatures are obtained from the displacement of the neighbouring elements. A set of example shows the efficiency of the approach and the relative roles of the tensile, in‐plane shear and bending rigidities. Especially their influence on the appearance and the development of wrinkles in draping and forming tests is analysed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Textile reinforcement forming is frequently used in aeronautic and automobile industries as a composite manufacturing process. The double-curved shape forming may be difficult to control and can lead to defects. Numerical simulation analysis can predict the suitable forming conditions and minimize the defects. Wrinkling as one of the most common flaws can be experienced easily during textile composite forming for certain specific shapes, for example the square box. In order to product a composite square box without wrinkles, a surface 3D weaving process has been developed to weave directly the shape of final part without the step of 2D preforming. In the surface 3D weaving the three directions are completely designed. The warp and weft yarns on all the surfaces of square box are absolutely under control and the final 3D ply has a homogeneous fibre volume fraction.  相似文献   

6.
Textile preforming is the stitching, cutting, and assembling of reinforcement textiles to enhance mechanical properties or optimize the RTM-tool loading. The stitching of the reinforcing textile has direct influence on the permeability of the preform. In this paper the influence on permeability of two different stitching patterns with five different seam distances is described. The two-dimensional permeability has been determined continuously in a matched metal tool incorporating capacitive sensors. Beforehand, the glass twill weave textile has been thoroughly evaluated to determine the permeability behavior of the textile without stitching in dependence on the fiber volume fraction and the cavity height. The paper reveals the significant influence of the stitching seam distance and the stitching pattern on the permeability values K1 and K2, the orientation angle of the flow front ellipse, and the anisotropy of the preform for two different fiber volume contents.  相似文献   

7.
The composite textile reinforcement draping simulations allows the conditions for a successful process to be determined and, most importantly, the positions of the fibres after forming to be known. This last point is essential for the structural computations of the composite part and for resin injection analyses in the case of LCM processes. Because the textile composite reinforcements are multiscale materials, continuous (macro) approaches and discrete (meso) approaches that model the yarns have been developed. The finite element that is proposed in this paper for textile fabric forming is composed of woven unit cells. The mechanical behaviour of these is analyzed by 3D computations at the mesoscale regarding biaxial tensions and in plane shear. The warp and weft directions of the woven fabric can be in arbitrary direction with respect to the direction of the element side. This is very important in the case of multi-ply deep drawing and when using remeshing. The element is efficient because it is close to the physic of the woven cell while avoiding the very large number of unknowns in the discrete approach. A set of validation tests and forming simulations on single ply and multi-ply are presented and show the efficiency of the approach. In particular the importance of the in-plane shear behaviour is emphasized in the case of a draping on a cube.  相似文献   

8.
Composites of technical textiles used as reinforcement and fine-grained concrete used as matrix, called textile reinforced concrete (TRC), provide the opportunity to construct thin structural elements. Typically, the reinforcing textiles are made of yarns consisting of hundreds of alkali-resistant glass filaments, which leads to a complex microstructural behavior, especially with respect to bond. In order to reveal its complexity some experimental investigations are summarized. It is recognizable that the bond between concrete and filaments is subject to some deficiencies. Therefore, mechanical models are required to describe the early failure of single filaments as well as the bond and friction behavior of filaments and concrete. The mechanical models are solved numerically within a finite element framework. Exemplary calculations for an ideal yarn and important cases of deficiencies show typical properties of the load carrying and the bond behavior.  相似文献   

9.
10.
The mechanical properties of soft biological tissues vary depending on how the internal structure is organized. Classical examples of tissues are ligaments, tendons, skin, arteries, and annulus fibrous. The main element of such tissues is the fibers which are responsible for the tissue resistance and the main mechanical characteristic is their viscoelastic anisotropic behavior. The objective of this paper is to extend an existing model for isotropic viscoelastic materials in order to include anisotropy provided by fiber reinforcement. The incorporation of the fiber allows the mechanical behavior of these tissues to be simulated. The model is based on a variational framework in which its mechanical behavior is described by a free energy incremental potential whose local minimization provides the constraints for the internal variable updates for each load increment. The main advantage of this variational approach is the ability to represent different material models depending on the choice of suitable potential functions. Finally, the model is implemented in a finite‐element code in order to perform numerical tests to show the ability of the proposed model to represent fiber‐reinforced materials. The material parameters used in the tests were obtained through parameter identification using experimental data available in the literature. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Fabric Reinforced Cementitious Matrix (FRCM) composites are advanced cement-based materials often used for strengthening masonry or concrete structures. The system is usually composed of a dry grid of fibers embedded in a cementitious matrix enriched with short fibers.An important parameter for designing the structural reinforcement is the tensile load-bearing capacity of FRCM composites. For their heterogeneity, FRCM composites show an interesting mechanical behavior in tension, that depends on the properties of the components and of the bonding strength. These values could be estimated with mechanical models but must be validated experimentally by means of proper testing campaigns.In this work several FRCM materials made with different fiber grids were investigated. Four different types of fibers were considered: polyparaphenylene benzobisoxazole (PBO), carbon (C), glass (G) and PBO and glass (PBO-G) fibers and three different types of cementitious mortars.The behavior of FRCM under tension and the influence of the bond properties between the dry textile and the inorganic matrix are studied developing an extensive experimental program that included the characterization both of the materials components and of the composites. A series of push–pull double lap tests and pull-off tests were performed to determine the bonding properties of FRCM composites applied to masonry structures.The paper presents results and considerations that can provide background data for future recommendations for the use of FRCM systems in the rehabilitation of elements.  相似文献   

12.
The effect of different fiber arrangements on mechanical behavior was investigated by using both experimental study and finite elements analyses. In particular, this study examined resultant residual stresses and plastic strains of steel-fiber reinforced thermoplastic composite discs under constant convective air cooling conditions. Three composite discs were manufactured with an identical concentration of woven, circular and radial arrays. The thermal and mechanical properties of the composite discs were measured. The numerical and experimental cooling curves were converged to correctly describe the convective cooling condition of the finite element analyses. After the cooling, the residual stresses and plastic strains in each disc were compared with one another and the results were analyzed. No thermal residual stress or plastic strain was observed for the woven fiber array. Residual stress and plastic strain found in the circular fiber array was twice as high as those in the radial fiber array. It is concluded that the reinforcement fiber array of thermoplastic composites is an effective parameter to describe their thermo-mechanical properties for the formation of thermal residual stresses and plastic deformation.  相似文献   

13.
In this work, we analyze the influence of different fiber surface treatments on the mechanical properties of plain weave composites. The reinforcement is a glass fibers fabric and the matrix is an acrylic polymer. Until very recently, this thermoplastic polymer family was not used in composite industry. It is therefore necessary to study if the existing fiber surface treatments are suitable for acrylic resins or if new ones have to be found. At the macroscale, composite materials corresponding to different fiber surface treatments were characterized with: (i) monotonic in-plane shear tests and (ii) heat-build up fatigue measurements on specimens with ±45° fiber orientations with respect to the tensile force. At the mesoscale (fabric scale), the development of damage was experimentally analyzed from (i) 3-D DIC (Digital Image Correlation) full-field strain measurements with spatial resolution smaller than the textile repeating unit and (ii) X-ray microtomography. We show that the analyzed composite materials exhibit linear viscoelastic behavior until a given stress threshold above which damage develops in the material. It was also found that the application on the fibers of a coupling agent specifically developed for promoting the bond between glass fibers and acrylic resins improves the composite mechanical properties, in particular the fatigue properties.  相似文献   

14.
纺织复合材料多为各向异性材料,其力学性能很大程度上取决于成型后预制体内纤维的取向。为确保预制体成型后纤维的取向符合产品设计的要求,目前已有多种无损检测技术为纺织复合材料预制体成型过程及质量的检测提供服务。本文结合纺织复合材料预制体织造技术的发展趋势及预制体成型过程对无损检测的需求,就目前广泛用于科研和产业化生产当中的多种无损检测技术(包括接触式测量技术、光学检测技术、热成像检测技术、涡流检测技术、射线检测技术)进行了综述,总结各方法所具有的技术特点、应用情况与存在问题。最后,讨论了纺织复合材料预制体成型过程无损检测技术的发展趋势和面临的挑战。   相似文献   

15.
Novel textile reinforced composites provide an extremely high adaptability and allow for the development of materials whose features can be adjusted precisely to certain applications. A successful structural and material design process requires an integrated simulation of the material behavior, the estimation of the effective properties which need to be assigned to the macroscopic model and the resulting features of the component. In this context two efficient modelling strategies - the Binary Model (Carter, Cox, and Fleck (1994)) and the Extended Finite Element Method (X-FEM) (Moës, Cloirec, Cartraud, and Remacle (2003)) - are used to model materials which exhibit a complex structure on the mesoscale. For these investigations the focus is set on composites made of glass fibers, thermoset or thermoplastic matrices and on the application of commingled thermoplastic and glass fibers. Homogenization techniques are applied to compute effective macroscopic stiffness parameters. Problems arising from a complex textile reinforcement architecture, e.g. bi- or multi-axial weft-knit, woven and braided fabrics, in combination with a high fiber volume fraction will be addressed and appropriate solutions are proposed. The obtained results are verified by experimental test data. The macroscopic stress and strain fields in a component are used for optimization of the construction and the material layout. These distributions are computed in a global structural finite element analysis. Based on the global fiber orientation the required macroscopic material properties obtained from homogenization on the meso-scale are mapped to the model of the structural part. The configuration of the fiber-orientation and textile shear deformation in complex structural components caused by the manufacturing process is determined by a three-dimensional optical measurement system.  相似文献   

16.
Characterising the drapeability of reinforcement fabrics, is one of the most sought after abilities of those designing composite processes and components. This is not surprising as composite processes are being considered in a greater range of fields and applications. Drapeability effects are formed by the irregular rearrangement of fibres. This displacement can occur within the textile plane and result in fibre disorientations, undulations and gaps or the fibres can be pushed into the third dimension - forming wrinkles or loops. To measure such effects in non-crimp fabrics, the Textechno Drapetest automatic drapeability tester was developed. To show its viability as a tool for composite engineering, a set of fabrics was chosen to show that the influence of textile design parameters on drapeability effects is now quantifiable. The Textechno Drapetest uses a sophisticated digital image analysis system to measure the position and direction of fibres and conclude from this information on the extent and intensity of drapeability effects in the textile surface. To measure effects outside the surface, i.e. wrinkles, a laser triangulation sensor is employed. The textiles were varied in the production parameters of stitch point distance in machine direction (MD) and cross direction (CD), the weight per area, and the stitch pattern (tricot and chain). The measurements showed that the new test method is capable of measuring the effects that were expected from classical test setups as well as a range of additional effects. From the results a significant influence of the stitch yarn on the formation of effects can be deduced. Especially the density of stitch points is a parameter that lets the textile producer control the behaviour of the textile when they are formed into a doubly curved three dimensional shape. To control the gap formation, however, the spacing of the stitch points in machine or in crosswise direction is also of importance with a shorter stitch length decreasing the forming of gaps more than a tighter stitch yarn pitch.  相似文献   

17.
Stamping is one of the most effective ways to form textile composites in industry for providing high-strength, low-weight and cost-effective products. This paper presents a fully continuum mechanics-based approach for stamping simulation of textile fiber reinforced composites by using finite element (FE) method. A previously developed non-orthogonal constitutive model is used to represent the anisotropic mechanical behavior of textile composites under large deformation during stamping. Simulation are performed on a balanced plain weave composite with 0°/90° and ±45° as initial yarn orientation over a benchmark double dome device. Simulation results show good agreement with experimental output in terms of a number of parameters selected for comparison. The effects of meshing and shear moduli obtained from bias extension test and picture frame test on forming simulation results are also investigated.  相似文献   

18.
The experimental determination of stiffness and strength of textile composites is expensive and time-consuming. Experimental tests are only capable of delivering properties of a whole textile layer, because a decomposition is not possible. However, a textile layer, consisting of several fiber directions, has the drawback that it is likely to exhibit anisotropic material behavior. In the presented paper a finite element multiscale analysis is proposed that is able to predict material behavior of textile composites via virtual tests, solely from the (nonlinear) material behavior of epoxy resin and glass fibers, as well as the textile fiber architecture. With these virtual tests it is possible to make predictions for a single layer within a textile preform or for multiple textile layers at once. The nonlinear and pressure-dependent behavior of the materials covered in the multiscale analysis is modeled with novel material models developed for this purpose. In order to avoid mesh-dependent solutions in the finite-element simulations, regularization techniques are applied. The simulations are compared to experimental test results.  相似文献   

19.
为了研究玄武岩纤维网格布和玻璃纤维网格布的耐碱腐蚀性及其对混凝土方板双向受弯性能的影响,进行了玄武岩纤维和高锆玻璃纤维的耐碱试验和其网格布增强混凝土双向板的弯曲性能试验。借鉴欧洲EFNARC标准,利用四边简支方板试验,对比分析了不同纤维网格布对混凝土方板的双向增强效应。结果表明,与玄武岩纤维相比,高锆玻璃纤维的耐碱腐蚀性更好。纤维网格布较高的双向受拉性能可改善混凝土双向板的内力和应力重分布能力,玄武岩纤维网格布和高锆玻璃纤维网格布使水泥双向板的受弯承载力分别提高了48%和59%,高锆玻璃纤维的双向增强作用优于玄武岩纤维。   相似文献   

20.
In this paper, a linear flow model based on Darcy's law was used in the experiment to measure permeability of sisal textile. The Kozeny-Carman equation was employed to predict the permeability of sisal textile and the Kozeny constant was calculated through experimental results. Both experimental and predicted permeability values of sisal textiles were compared. Effects of fiber surface treatments and fiber volume fraction on the permeability of sisal textile were also studied in this research. Comparisons of mechanical properties of sisal-textile-reinforced composites manufactured by different processing technologies were made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号