首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The aim of present study is to investigate the vibration and stability of functionally graded (FG) conical shells under a compressive axial load using the shear deformation theory (SDT). The basic equations of shear deformable FG conical shells are derived using Donnell shell theory and solved using Galerkin's method. The novelty of this study is to achieve closed-form solutions for the dimensionless frequencies and critical axial loads for freely-supported FG truncated conical shells on the basis of the SDT. Parametric studies are made to investigate effects of shear stresses, compositional profiles and conical shell characteristics on the critical parameters. Some comparisons with the various studies have been performed in order to show the accuracy of the present study.  相似文献   

2.
A study has been made to determine the critical time parameters of truncated conical shells with functionally graded coatings (FGCs) and subjected to a time dependent axial load in the large deformation. The method of solution utilizes Superposition principle and Galerkin procedure. Donnell–Karman type non-linear differential equations for the truncated conical shell with FGCs are derived and reduced to ordinary differential equation with the time dependent coefficient. The Runge–Kutta method and modified Budiansky–Roth criterion are then used to solve this non-linear differential equation with the time dependent coefficient. Finally, effects of compositional profiles of coatings, variation of truncated conical shell parameters and loading speed on the dimensionless linear and non-linear critical time parameters have been studied. Comparing the results of this study with those in the literature validates the present analysis.  相似文献   

3.
In this study, the non-linear buckling behavior of cross-ply laminated orthotropic truncated conical shells under axial load has been investigated. The basic relations of the cross-ply laminated orthotropic truncated conical shells are derived using the von Karman–Donnell-type of kinematic non-linearity. Then modified Donnell type non-linear stability and compatibility equations are obtained and are solved. Finally, the influences of the number and ordering of layers and the variations of the conical shell characteristics on the non-linear axial buckling load are investigated. Comparison with available results is satisfactorily good.  相似文献   

4.
In this paper, non-linear dynamic analysis of a functionally graded (FG) beam with pinned–pinned supports due to a moving harmonic load has been performed by using Timoshenko beam theory with the von-Kármán’s non-linear strain–displacement relationships. Material properties of the beam vary continuously in thickness direction according to a power-law form. The system of equations of motion is derived by using Lagrange’s equations. Trial functions denoting transverse, axial deflections and rotation of the cross-sections of the beam are expressed in polynomial forms. The constraint conditions of supports are taken into account by using Lagrange multipliers. The obtained non-linear equations of motion are solved with aid of Newmark-β method in conjunction with the direct iteration method. In this study, the effects of large deflection, material distribution, velocity of the moving load and excitation frequency on the beam displacements, bending moments and stresses have been examined in detail. Convergence and comparison studies are performed. Results indicate that the above-mentioned effects play a very important role on the dynamic responses of the beam, and it is believed that new results are presented for non-linear dynamics of FG beams under moving loads which are of interest to the scientific and engineering community in the area of FGM structures.  相似文献   

5.
This paper presents buckling analysis of a two-dimensional functionally graded cylindrical shell reinforced by axial stiffeners (stringer) under combined compressive axial and transverse uniform distributive load. The shell material properties are graded in the direction of thickness and length according to a simple power law distribution in terms of the volume fractions of the constituents. Primarily, the third order shear deformation theory (TSDT) is used to derive the equilibrium and stability equations. Since there is no closed form solution, the numerical differential quadrature method, (DQM), is applied for solving the stability equations. Initially, the obtained results for an isotropic shell using DQM were verified against those given in the literature for simply supported boundary conditions. The effects of load, geometrical and stringer parameters along with FG power index in the various boundary conditions on the critical buckling load have been studied. The study of results confirms that, stringers have significant effects on critical buckling load.  相似文献   

6.
A postbuckling analysis is presented for nanocomposite cylindrical shells reinforced by single-walled carbon nanotubes (SWCNTs) subjected to combined axial and radial mechanical loads in thermal environment. Two types of carbon nanotube-reinforced composite (CNTRC) shells, namely, uniformly distributed (UD) and functionally graded (FG) reinforcements, are considered. The material properties of FG-CNTRCs are assumed to be graded in the thickness direction, and are estimated through a micromechanical model. The governing equations are based on a higher order shear deformation shell theory with a von Kármán-type of kinematic nonlinearity. The thermal effects are also included and the material properties of CNTRCs are assumed to be temperature-dependent. A boundary layer theory and associated singular perturbation technique are employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of perfect and imperfect, FG-CNTRC cylindrical shells under combined action of external pressure and axial compression for different values of load-proportional parameters. The results for UD-CNTRC shell, which is a special case in the present study, are compared with those of the FG-CNTRC shell.  相似文献   

7.
The present paper describes a hybrid stress finite element formulation for geometrically non-linear analysis of thin shell structures. The element properties are derived from an incremental form of Hellinger-Reissner's variational principle in which all quantities are referred to the current configuration of the shell. From this multi-field variational principle, a hybrid stress finite element model is derived using standard matrix notation. Very simple flat triangular and quadrilateral elements are employed in the present study. The resulting non-linear equations are solved by applying the load in finite increments and restoring equilibrium by Newton-Raphson iteratioin. Numerical examples presented in the paper include complete snap-through buckling of cylindrical and spherical shells. It turns out that the present procedure is computationally efficient and accurate for non-linear shell problems of high complexity.  相似文献   

8.
This research investigates the free vibration and buckling of a two-layered cylindrical shell made of inner functionally graded (FG) and outer isotropic elastic layer, subjected to combined static and periodic axial forces. Material properties of functionally graded cylindrical shell are considered as temperature dependent and graded in the thickness direction according to a power-law distribution in terms of the volume fractions of the constituents. Theoretical formulations are presented based on two different methods of first-order shear deformation theory (FSDT) considering the transverse shear strains and the rotary inertias and the classical shell theory (CST). The results obtained show that the transverse shear and rotary inertias have considerable effect on the fundamental frequency of the FG cylindrical shell. The results for nondimensional natural frequency are in a close agreement with those in literature. It is inferred from the results that the geometry parameters and material composition of the shell have significant effect on the critical axial force, so that the minimum critical load is obtained for fully metal shell. Good agreement between theoretical and finite element results validates the approach. It is concluded that the presence of an additional elastic layer significantly increases the nondimensional natural frequency, the buckling resistance and hence the elastic stability in axial compression with respect to a FG hollow cylinder.  相似文献   

9.
In this work, the buckling behavior of the cross-ply laminated non-homogeneous orthotropic truncated conical shells in the large deformation under the uniform axial load is studied. Firstly, the basic relations of the cross-ply laminated non-homogeneous orthotropic truncated conical shells are derived using the large deformation theory. Then modified Donnell type non-linear stability and compatibility equations are obtained and solved. A computer program called Maple 14 has been used in the numerical solution. Finally, the influences of the degree of non-homogeneity, the number and ordering of layers and the variations of the conical shell characteristics on the non-linear axial buckling load are investigated. The comparison with available results is satisfactorily good.  相似文献   

10.
This paper presents a theoretical approach to solve vibration problems of functionally graded (FG) truncated conical shells under mixed boundary conditions. The material properties of FG shell are assumed to vary continuously through the thickness of the conical shell. The fundamental relations, motion and strain compatibility equations of FG truncated conical shells are derived by means of the Airy stress function method. Two cases of mixed boundary conditions are investigated. The basic equations are solved by using Galerkin method and fundamental cyclic frequencies of FG truncated conical shells are obtained. The results are compared and validated with the results available in the literature. The detailed parametric studies are carried out to investigate the influences of radius-to-thickness ratio, lengths-to-radius ratio, material composition and mixed boundary conditions on the fundamental cyclic frequencies of truncated conical shells.  相似文献   

11.
A postbuckling analysis is presented for nanocomposite cylindrical shells reinforced by single-walled carbon nanotubes (SWCNTs) subjected to axial compression in thermal environments. Two kinds of carbon nanotube-reinforced composite (CNTRC) shells, namely, uniformly distributed (UD) and functionally graded (FG) reinforcements, are considered. The material properties of FG-CNTRCs are assumed to be graded in the thickness direction, and are estimated through a micromechanical model. The governing equations are based on a higher order shear deformation theory with a von Kármán-type of kinematic nonlinearity. The thermal effects are also included and the material properties of CNTRCs are assumed to be temperature-dependent. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of axially-loaded, perfect and imperfect, FG-CNTRC cylindrical shells under different sets of thermal environmental conditions. The results for UD-CNTRC shell, which is a special case in the present study, are compared with those of the FG-CNTRC shell. The results show that the linear functionally graded reinforcements can increase the buckling load as well as postbuckling strength of the shell under axial compression. The results reveal that the CNT volume fraction has a significant effect on the buckling load and postbuckling behavior of CNTRC shells.  相似文献   

12.
Buckling and postbuckling behavior are presented for fiber reinforced composite (FRC) laminated cylindrical shells subjected to axial compression or a uniform external pressure in thermal environments. Two kinds of fiber reinforced composite laminated shells, namely, uniformly distributed (UD) and functionally graded (FG) reinforcements, are considered. The governing equations are based on a higher order shear deformation shell theory with von Kármán-type of kinematic non-linearity and including the extension-twist, extension-flexural and flexural-twist couplings. The thermal effects are also included, and the material properties of FRC laminated cylindrical shells are estimated through a micromechanical model and are assumed to be temperature dependent. The non-linear prebuckling deformations and the initial geometric imperfections of the shell are both taken into account. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths of FRC laminated cylindrical shells.  相似文献   

13.
This article presents an investigation on the buckling of functionally graded (FG) truncated conical shells under an axial load resting on elastic foundations within the shear deformation theory (SDT). The governing equations are solved using the Galerkin method, and the closed-form solution of the axial buckling load for FG conical shells on elastic foundations within the SDT is obtained. Various numerical examples are presented and discussed to verify the accuracy of the closed-form solution in predicting dimensionless buckling loads for FG conical shells on the Winkler–Pasternak elastic foundations within the SDT.  相似文献   

14.
Dynamic elasticity solution for a clamped, laminated cylindrical shell with two orthotropic layers bounded with a piezoelectric layer and subjected to impulse load distributed on inner surface is presented. The piezoelectric layer serves as sensor/actuator. The governing elasticity PDE equations are reduced to ordinary differential equations by means of Legendre polynomial expansion for displacement and electric potential in the axial direction. The resulting equations are transferred into state space form and reduced to an eigenvalue problem by using Galerkin's finite element in radial direction. The static and dynamic results are presented for [0/90/Piezo] lamination. The radius to thickness ratio effect on dynamic behavior is studied. The results are compared for different thickness ratios and applied electric loads with simply-supported shell results. Time responses for sensor and actuated shell are presented and natural frequencies are compared with simply-supported shell results.  相似文献   

15.
The buckling of a sandwich cylindrical shell under uniform external hydrostatic pressure is studied in three ways. The simplifying assumption of a long shell is made (or, equivalently, ‘ring’ assumption), in which the buckling modes are assumed to be two-dimensional, i.e. no axial component of the displacement field, and no axial dependence of the radial and hoop displacement components. All constituent phases of the sandwich structure, i.e. the facings and the core, are assumed to be orthotropic. First, the structure is considered a three-dimensional (3D) elastic body, the corresponding problem is formulated and the solution is derived by solving a set of two linear homogeneous ordinary differential equations of the second-order in r (the radial coordinate), i.e. an eigenvalue problem for differential equations, with the external pressure, p the parameter/eigenvalue. A complication in the sandwich construction is due to the fact that the displacement field is continuous but has a slope discontinuity at the face-sheet/core interfaces, which necessitates imposing ‘internal’ boundary conditions at the face-sheet/core interfaces, as opposed to the traditional two-end-point boundary value problems. Second, the structure is considered a shell and shell theory results are generated with and without accounting for the transverse shear effect. Two transverse shear correction approaches are employed, one based only on the core, and the other based on an effective shear modulus that includes the face-sheets. Third, finite element results are generated by use of the ABAQUS finite element code. In this part, two types of elements are used: a shear deformable shell element and a solid 3D (brick) element. The results from all these three different approaches are compared.  相似文献   

16.
In the present study, the Gurtin-Murdoch elasticity theory, as a theory capable of capturing size effects, is implemented to predict the nonlinear buckling and postbuckling response of cylindrical nanoshells under combined axial and radial compressive loads in the presence of surface stress effects. For this purpose, a size-dependent shell mode containing geometric nonlinearity is proposed within the framework of the classical shell theory. Because it is necessary to satisfy balance conditions on the surfaces of nanoshell, it is assumed that the normal stress component of the bulk varies linearly through the shell thickness. On the basis of a variational formulation using the principle of virtual work, the non-classical governing differential equations are derived. Subsequently, a boundary layer theory is employed including the nonlinear prebuckling deformations and the large deflections in the postbuckling regime. Then a two-stepped perturbation methodology is utilized to obtain the size-dependent critical buckling loads and the postbuckling equilibrium paths of nanoshells corresponding to the axial dominated and radial dominated loading cases. It is revealed that in the radial dominated loading case, a positive value of surface elastic constants leads to increase the critical buckling load but decrease the critical end-shortening of nanoshell. However, in the axial dominated loading case, surface elastic constants with positive sign causes to increase the both critical buckling load and critical end-shortening of nanoshell.  相似文献   

17.
A simplified and accurate analytical cum numerical model is presented here to investigate the behavior of functionally graded (FG) cylinders of finite length subjected to thermal load. A diaphragm supported FG cylinder under symmetric thermal load which is considered as a two dimensional (2D) plane strain problem of thermoelasticity in (r, z) direction. The boundary conditions are satisfied exactly in axial direction (z) by taking an analytical expression in terms of Fourier series expansion. Fundamental (basic) dependent variables are chosen in the radial coordinate of the cylinder. First order simultaneous ordinary differential equations are obtained as mathematical model which are integrated through an effective numerical integration technique by first transforming the boundary value problem into a set of initial value problems. For FG cylinders, the material properties have power law dependence in the radial coordinate. Effect of non homogeneity parameters and orthotropy of the materials on the stresses and displacements of FG cylinder are studied. The numerical results obtained are also first validated with existing literature for their accuracy. Stresses and displacements in axial and radial directions in cylinders having various l/r i and r o/r i ratios parameter are presented for future reference.  相似文献   

18.
Summary In this paper, the vibration and stability of a three-layered conical shell containing a functionally graded material (FGM) layer subjected to axial compressive load are studied. The material properties of the functionally graded layer are assumed to vary continuously through the thickness of the shell. The variation of properties follows an arbitrary distribution in terms of the volume fractions of the constituents. The fundamental relations, the dynamic stability and compatibility equations of three-layered truncated conical shells containing an FGM layer are obtained first. Applying Galerkin's method, these equations are transformed to a pair of time dependent differential equations, and critical axial load and frequency parameter are obtained. The results show that the critical parameters are affected by the configurations of the constituent materials and the variation of the shell geometry. Comparing results with those in the literature validates the present analysis.  相似文献   

19.
In this article, the functionally graded (FG) cylindrical thin shell formulation is developed by using modified couple stress theory. The equations of motion and classical and nonclassical boundary conditions are extracted based on Hamilton's principle. As a special case, the equations of motion in conjunction with the boundary conditions for simply supported FG cylindrical shell are obtained, and then Navier solution procedure is used for analysis free vibration of nano shell. Afterwards, the influences of different parameters like length scale parameter, distribution of FG properties, and length to radius ratio on dimensionless natural frequency are investigated and compared with classical theory.  相似文献   

20.
In the present study, linear dynamic analysis of an axially functionally graded (AFG) beam with simply-supported edges due to a moving harmonic load has been analyzed by using Euler–Bernoulli beam theory. Elasticity modulus and mass density of the beam vary continuously in the axial direction of the beam according to a power–law form. The equation of motion is derived by using Lagrange’s equations. The unknown functions denoting the transverse deflections of the AFG beam is expressed in modal form, and Newmark method is employed to find the dynamic responses of AFG beam. In this study, the influences of material distribution, velocity of the moving load and excitation frequency on the dynamic response of the beam are investigated. In order to establish the accuracy of the present formulation and results, the first three free vibration frequencies are obtained, and compared with the published results available in the literature. Good agreement is observed. Results indicate that the above-mentioned effects play a very important role on the dynamic responses of the beam, and it is believed that new results are presented for non-linear dynamics of FG beams under moving loads which are of interest to the scientific and engineering community in the area of FGM structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号