首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Titanium oxide (TiOx) thin films were prepared on transparent conducting substrate (fluorine-doped tin oxide) by cathodic electrolysis of a solution containing a titanium bis(ammonium lactato)dihydroxide and an ammonium nitrate at 323 K. Post-deposition treatment: calcination at 723 K or hot-water treatment at > 363 K promoted the growth of an anatase type crystalline phase in the TiO2 thin film, as evidenced by X-ray diffraction and X-ray photoelectron spectroscopy. The calcined films were used as electrodes of a dye-sensitized solar cells and the cells' energy conversion efficiency was comparable to that obtained with commercially available TiO2 nanoparticle electrodes.  相似文献   

2.
Antibacterial packaging is introduced as a new method to prevent microbial food spoilage. Antibacterial effects of TiO2, ZnO and mixed TiO2–ZnO nanoparticle‐coated low‐density polyethylene (LDPE) films on Escherichia coli PTCC1330 were investigated. Bactericidal efficiency of 0.5%, 1% and 2% TiO2 and ZnO nanoparticles and also 1% mixed TiO2–ZnO nanoparticles with ratios of 25/75, 50/50 and 75/25 were tested under ultraviolet (UV) and fluorescent lights at two states: films alone and fresh calf minced meat packed. Maximum colony‐forming unit (CFU) reduction of 99.8% and 99.7% were obtained using 1% and 2% ZnO nanoparticle‐coated LDPE film under fluorescent light for films alone as well as 99.8% and 99.6% for fresh calf minced meat packed. 90.3% and 51.8% CFU reduction were recorded for 1% TiO2 nanoparticle‐coated LDPE films in the presence of UV light at direct contact with bacteria and fresh calf minced meat packed, respectively. Maximum CFU reductions of 96% and 64.1% were obtained using 50/50 ratio of TiO2/ZnO nanoparticles at the presence of UV light for film alone and fresh calf minced meat packed, respectively. ZnO nanoparticle‐coated LDPE films were identified as the best case to improve shelf life and prevent E. coli growth in fresh calf minced meat.  相似文献   

3.
The influence of the preparation conditions on the structural, morphological and optical properties of TiO2 thin films deposited on silicon substrate (Si), indium tin oxide coated glass (ITO) and alkali-free borosilicate glass (AFG), respectively is studied in this work. The X-ray diffraction analysis revealed that all TiO2 samples had a polycrystalline structure. The TiO2 films coated on Si showed a mixed phase of anatase and rutile while in the case of those on ITO and AFG only the pure anatase phase was observed. The crystallite size within the TiO2 thin films varied with the calcinations temperature, solvent lateral chain and catalyst type. The optical transmittance, band gap, reflective index and porosity were strongly affected by the annealing temperature, substrate nature and solvent.  相似文献   

4.
Mesoporous TiO2 nanoparticle (NP) films are broadly used as electrodes in photoelectrochemical cells, dye‐sensitized solar cells (DSSCs), and perovskite solar cells (PSCs). State‐of‐the‐art mesoporous TiO2 NP films for these solar cells are fabricated by annealing TiO2 paste‐coated fluorine‐doped tin oxide glass in a box furnace at 500 °C for ≈30 min. Here, the use of a nontraditional reactor, i.e., flame, is reported for the high throughput and ultrafast annealing of TiO2 paste (≈1 min). This flame‐annealing method, compared to conventional furnace annealing, exhibits three distinct benefits. First, flame removes polymeric binders in the initial TiO2 paste more completely because of its high temperature (≈1000 °C). Second, flame induces strong interconnections between TiO2 nanoparticles without affecting the underlying transparent conducting oxide substrate. Third, the flame‐induced carbothermic reduction on the TiO2 surface facilitates charge injection from the dye/perovskite to TiO2. Consequently, when the flame‐annealed mesoporous TiO2 film is used to fabricate DSSCs and PSCs, both exhibit enhanced charge transport and higher power conversion efficiencies than those fabricated using furnace‐annealed TiO2 films. Finally, when the ultrafast flame‐annealing method is combined with a fast dye‐coating method to fabricate DSSC devices, its total fabrication time is reduced from over 3 h to ≈10 min.  相似文献   

5.
Titanium dioxide (TiO2) thin films were prepared on Galvanized Iron (GI) substrate by plasma-enhanced atomic layer deposition (PE-ALD) using tetrakis-dimethylamido titanium and O2 plasma to investigate the photocatalytic activities. The PE-ALD TiO2 thin films exhibited relatively high growth rate and the crystal structures of TiO2 thin films depended on the growth temperatures. TiO2 thin films deposited at 200 °C have amorphous phase, whereas those with anatase phase and bandgap energy about 3.2 eV were deposited at growth temperature of 250 °C and 300 °C. From contact angles measurement of water droplet, TiO2 thin films with anatase phase and Activ™ glass exhibited superhydrophilic surfaces after UV light exposure. And from photo-induced degradation test of organic solution, anatase TiO2 thin films and Activ™ glass decomposed organic solution under UV illumination. The anatase TiO2 thin film on GI substrate showed higher photocatalytic efficiency than Activ™ glass after 5 h UV light exposure. Thus, we suggest that the anatase phase in TiO2 thin film contributes to both superhydrophilicity and photocatalytic decomposition of 4-chlorophenol solution and anatase TiO2 thin films are suitable for self-cleaning applications.  相似文献   

6.
Hoda S. Hafez 《Materials Letters》2009,63(17):1471-1474
Highly-active anatase TiO2 nanorods have been successfully synthesized via a simple two-step method, hydrothermal treatment of anatase/rutile titanium dioxide nanoparticle powder in a composite-hydroxide eutectic system of 1:1 M KOH/NaOH, followed by acid post-treatment. The morphology and crystalline structure of the obtained nanorods were characterized using XRD, TEM, SEM/EDX and BET surface area analyzer. The obtained TiO2 nanorods have a good crystallinity and a size distribution (about 4-16 nm); with the dimensions of 200-300 nm length and of 30-50 nm diameter. Compared with its precursor anatase/rutile TiO2 nanoparticles and the titanate nanotubes, the pure anatase TiO2 nanorods have a large specific surface area with a mesoporous structure. The photocatalytic performance of the prepared nanorods was tested in the degradation of the commercial Cibacrown Red (FN-R) textile dye, under UV irradiation. Single-crystalline anatase TiO2 nanorods are more efficient for the dye removal.  相似文献   

7.
Dye-sensitized solar cells (DSSC) are based on the concept of photosensitization of wide-band-gap mesoporous oxide semiconductors. At present, DSSC have ventured into advanced development and pilot production. Our current research emphasizes on improvements on titanium dioxide (TiO2) photosensitivity under visible light irradiation by using metal plasma ion implantation (MPII). The anatase TiO2 electrode was prepared via a sol-gel process and deposited onto indium-tin oxide glass substrates. Subsequently, the as-deposited TiO2 films were subjected to MPII at 20 keV in order to incorporate ruthenium (Ru) atoms onto the TiO2 surface layer. The Ru-implanted TiO2 thin film possessed nanocrystalline Ru clusters of 20 nm in diameter and distributed in near surface layer of TiO2 films. The Ru clusters showed effective in both prohibiting electron-hole recombination and generating additional Ru-O impurity levels for the TiO2 band gap structure. A significant reduction of TiO2 band gap energy from 3.22 to 3.11 eV was achieved, which resulted in the extension of photocatalysis of TiO2 from UV to Vis regime. A small drop of photoelectric performance of 8% was obtained due to the incorporation of Ru atoms in the surface layer of TiO2, a similar side effect as observed in the Fe-implanted TiO2. However, the overall retention of the photocatalysis capability is as high as 92% when switch from UV to Vis irradiation. The improvement of the photosensitivity of TiO2 DSSC by means of metal plasma ion implantation is promising.  相似文献   

8.
Synthesis and photocatalytic oxidation properties of titania hollow spheres   总被引:2,自引:0,他引:2  
The hollow spheres of anatase TiO2 with higher photocatalytic activity have been fabricated by spherical CaCO3 nanoparticles as a template, and titanium sulfate (Ti(SO4)2) as a precursor, and the CaCO3 templates were dissolved subsequently in dilute HNO3 solution. The TiO2 hollow spheres samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and N2 adsorption-desorption isotherms. The characterization results indicate that as prepared TiO2 hollow spheres sample was transformed to anatase phase in calcined at 400 °C, and the anatase TiO2 hollow spheres have a higher specific surface area and show much better photocatalytic activity than commercial P25 in the photodegradation of Rhodamine B under the UV irradiation.  相似文献   

9.
Different chemical state of titanium oxide films were deposited on commercially pure Ti (CP Ti) by reactive DC magnetron sputtering under different oxygen flow rates to examine a possibility of their applications to endovascular stents. The chemical composition and crystal structure of the obtained films were analyzed by XPS and XRD, respectively. In dependence on the deposition parameters employed, the obtained films demonstrated different mixture of anatase TiO2, Ti2O3, TiO and Ti. The wettability of the films was measured by the water contact angle variation. By formation of titanium oxide film on CP Ti, contact angle was decreased. In order to modify and control the surface wettability, the resultant TiOx films were etched subsequently by different plasma. The wettability was influenced by etched process according to the decreased contact angle values of etched TiOx film. Furthermore, TiOx films became highly hydrophilic by ultraviolet (UV) irradiation, and returned to the initial relatively hydrophobic state by visible-light (VIS) irradiation. The wettability of the TiOx film was enabled to convert between hydrophilic and hydrophobic reversibly by alternative UV and VIS irradiation. By adjusting deposition parameter and further modification process, the wettability of the TiOx films can be changed freely in the range of 0–90°.  相似文献   

10.
Transparent antireflective SiO2/TiO2 double layer thin films were prepared using a sol–gel method and deposited on glass substrate by spin coating technique. Thin films were characterized using XRD, FE-SEM, AFM, UV–Vis spectroscopy and water contact angle measurements. XRD analysis reveals that the existence of pure anatase phase TiO2 crystallites in the thin films. FE-SEM analysis confirms the homogeneous dispersion of TiO2 on SiO2 layer. Water contact angle on the thin films was measured by a contact angle analyzer under UV light irradiation. The photocatalytic performance of the TiO2 and SiO2/TiO2 thin films was studied by the degradation of methylene blue under UV irradiation. The effect of an intermediate SiO2 layer on the photocatalytic performance of TiO2 thin films was examined. SiO2/TiO2 double layer thin films showed enhanced photocatalytic activity towards methylene blue dye.  相似文献   

11.
Yichun Qu  Yunbo Luan 《Thin solid films》2010,518(12):3177-3181
In this paper, doped and undoped anatase TiO2 nanoparticle films on indium tin oxide glasses have been fabricated by spin coating sols containing Zn2+ or Zn2+ and sodium dodecylbenzenesulfonate (DBS), respectively. The effects of the co-addition of Zn2+ and DBS on the photocatalysis performance and wetting properties of the resulting TiO2 nanoparticle films were investigated. The results showed that the addition of Zn2+ improved both the photocatalytic activity and the hydrophilicity, which was attributed to surface oxygen vacancies. The co-addition of Zn2+ and DBS resulted in an important increase of the surface roughness, resulting in films showing a superhydrophilic behavior. However, the photocatalytic activity was slightly decreased by co-adding Zn2+ and DBS. The DBS addition resulted in changes in the surface microstructure of the TiO2 films, changing the photocatalytic activity and wetting performance.  相似文献   

12.
The gel-derived TiO2 and P-TiO2 transparent films coated on fused-SiO2 substrates were prepared using a spin-coating technique. Effects of phosphorus dopants and calcination temperature on crystal structure, crystallite size, microstructure, light transmittance and photocatalytic activity of the films were investigated. By introducing P atoms to Ti-O framework, the growth of anatase crystallites was hindered and the crystal structure of anatase-TiO2 could withstand temperature up to 900 °C. The photocatalytic activities of the prepared films were characterized using the characteristic time constant (τ) for the photocatalytic reaction. The titania film with a smaller τ value possesses a higher photocatalytic ability. After exposing to 365-nm UV light for 12 h, the P-TiO2 films calcined between 600 °C and 900 °C can photocatalytically decomposed ≥ 84 mol% of the methylene blue in water with corresponding τ ≤ 7.1 h, which were better than the pure TiO2 films prepared at the same calcination temperature.  相似文献   

13.
A dip-coating technique was employed to prepare anatase phase of titania thin films. Fluorine doped tin oxide substrates were used to prepare titania thin films. The samples were annealed at 550 °C for 18 h. X-ray diffraction results revealed the amorphous and anatase phases of TiO2 for as-synthesized and annealed samples, respectively. The crystallite size of anatase TiO2 thin films was almost 25 nm for annealed samples. UV–visible confirmed the energy band gap 3.86 and 3.64 eV for as-prepared and calcinated titania thin films. The reduction in the energy band gap could be due to the change in crystallization and agglomeration of small grains after calcination. The morphology of the prepared films was investigated by field emission scanning electron microscopy which demonstrated the agglomeration of spherical particles of TiO2 with average particle size of about 30 nm. The molecular properties (chemical bonding) of the samples were investigated by means of Fourier Transform Infrared (FTIR) spectroscopy. FTIR analysis exhibited the formation of titania, functional group OH, hydroxyl stretching vibrations of the C–OH groups, bending vibration mode of H–O–H, alkyl C–H stretch, stretching band of Ti–OH, CN asymmetric band stretching, and C=O saturated aldehyde.  相似文献   

14.
Substrate dipping in a composite sol–gel solution was used to prepare both smooth and rough thin films of titanium dioxide (TiO2) on commercial fiberglass. The deposition of a composite film was done in a beaker using a solution of titanium (IV) isopropoxide as the sol–gel precursor and cetyltrimethyl ammonium bromide as the surfactant. In order to establish a correlation between experimental conditions and the titanium oxide produced, as well as the film quality, the calcined samples were characterized using Raman spectroscopy, UV–vis spectrophotometry, scanning electron microscopy and atomic force microscopy. One of the most important results is that a 61-nm TiO2 film was obtained with a short immersion of fiberglass into the sol–gel without surfactant. In other cases, the deposited film consisted of a titanium precursor gel encapsulating micelles of surfactant. The gel films were converted to only the anatase phase by calcining them at 500 °C. The resulting films were crystalline and exhibited a uniform surface topography. In the present paper, it was found that the TiO2 films prepared from the sol–gel with a surfactant showed a granular microstructure, and are composed of irregular particles between 1.5 and 3 μm. Smooth TiO2 films could have useful optical and corrosion-protective properties and, on other hand, roughness on the TiO2 films can enhance the inherent photocatalytic activity.  相似文献   

15.
Photocatalytic properties of porous TiO2/Ag thin films   总被引:1,自引:0,他引:1  
In this study, nanocrystalline TiO2/Ag composite thin films were prepared by a sol-gel spin-coating technique. By introducing polystyrene (PS) spheres into the precursor solution, porous TiO2/Ag thin films were prepared after calcination at a temperature of 500 °C for 4 h. Three different sizes (50, 200, and 400 nm) of PS spheres were used to prepare porous TiO2 films. The as-prepared TiO2 and TiO2/Ag thin films were characterized by X-ray diffractometry (XRD) and by scanning electron microscopy to reveal structural and morphological differences. In addition, the photocatalytic properties of these films were investigated by degrading methylene blue under UV irradiation.When PS spheres of different sizes were introduced after calcination, the as-prepared TiO2 films exhibited different porous structures. XRD results showed that all TiO2/Ag films exhibited a major anatase phase. The photodegradation of porous TiO2 thin films prepared with 200 nm PS spheres and doped with 1 mol% Ag exhibited the best photocatalytic efficiency where ∼ 100% methylene blue was decomposed within 8 h under UV exposure.  相似文献   

16.
《Materials Research Bulletin》2006,41(9):1596-1603
Anatase TiO2 thin films were successfully prepared on glass slide substrates via a sol–gel method from refluxed sol (RS) containing anatase TiO2 crystals at low temperature of 100 °C. The influences of various refluxing time on crystallinity, morphology and size of the RS sol and dried TiO2 films particles were discussed. These samples were characterized by infrared absorption spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission-scanning electron microscopy (FE-SEM) and UV–vis absorption spectroscopy (UV–vis). The photocatalytic activities of the TiO2 thin films were assessed by the degradation of methyl orange in aqueous solution. The results indicated that titania films thus obtained were transparent and their maximal light transmittance exceeded 80% under visible light region. The TiO2 thin films prepared from RS-6 sol showed the highest photocatalytic activity, when the calcination temperature is higher than 300 °C. The degradation of methyl orange of RS-6 thin films reached 99% after irradiated for 120 min, the results suggested that the TiO2 thin films prepared from RS sol exhibited high photoactivities.  相似文献   

17.
Heterostructured TiO2 nanorod@nanobowl (NR@NB) arrays consisting of rutile TiO2 nanorods grown on the inner surface of arrayed anatase TiO2 nanobowls are designed and fabricated as a new type of photoanodes for photoelectrochemical (PEC) water splitting. The unique heterostructures with a hierarchical architecture are readily fabricated by interfacial nanosphere lithography followed by hydrothermal growth. Owing to the two‐dimensionally arrayed structure of anatase nanobowls and the nearly radial alignment of rutile nanorods, the TiO2 NR@NB arrays provide multiple scattering centers and hence exhibit an enhanced light harvesting ability. Meanwhile, the large surface area of the NR@NB arrays enhances the contact with the electrolyte while the nanorods offer direct pathways for fast electron transfer. Moreover, the rutile/anatase phase junction in the NR@NB heterostructure improves charge separation because of the facilitated electron transfer. Accordingly, the PEC measurements of the TiO2 NR@NB arrays on the fluoride‐doped tin oxide (FTO) substrate show significantly enhanced photocatalytic properties for water splitting. Under AM1.5G solar light irradiation, the unmodified TiO2 NR@NB array photoelectrode yields a photocurrent density of 1.24 mA cm–2 at 1.23 V with respect to the reversible hydrogen electrode, which is almost two times higher than that of the TiO2 nanorods grown directly on the FTO substrate.  相似文献   

18.
In this paper, nanostructure TiO2 thin films were deposited on glass substrates by sol-gel dip coating technique. X-ray diffraction and Fourier transform infrared spectroscopy were used to determine film behaviour. The super-hydrophilicity was assessed by contact angle measurement. Photocatalytic properties of these films were evaluated by degradation of methylene blue under UV irradiation. The XRD pattern of TiO2 powder samples confirmed the presence of polycrystalline anatase phase with a crystal size of 17 nm. The results indicated that UV light irradiation had significant effect on super-hydrophilic and photocatalytic properties of TiO2 thin films.  相似文献   

19.
The effective one-step physical approach is demonstrated for the fabrication of anatase titanium dioxide nanotubes through r.f. magnetron sputtering of TiO2 on a highly ordered nanoporous anodic alumina template. The nanostructured TiO2 benefited from the combination of unique properties of both the sputtering technique that provided well-controlled environment for the fabrication of anatase phase TiO2 and the porous anodic alumina (PAA) that provided uniform and ordered nanopores. The photocatalytic properties of TiO2 films were characterized following the degradation of methylene blue molecules under UV light irradiation. The photocatalytic activity of the nanostructured TiO2 films has been found to be approximately twice higher in comparison with the flat TiO2 films fabricated at the same conditions.  相似文献   

20.
This study reports on the synthesis, characterisation and environmental applications of immobilised Titanium dioxide (TiO2) as photocatalyst. Nanostructured thin films have been prepared on glass substrates using a layer-by-layer dip-coating method. The crystalline phase and surface morphology of the thin films were investigated by X-ray diffraction (XRD) pattern and scanning electron microscopy (SEM), respectively. The XRD results show that the TiO2 thin films crystallise in anatase phase and we have found that the thin films consist of titanium dioxide nanocrystals. SEM shows that the nanoparticles are sintered together to form a compact structure and TiO2 particles coated with silver nanoclusters were observed. Ag-coated TiO2 films demonstrated photocatalysis performance when irradiated, and the Ag carrier further showed an electron-scavenging ability to mitigate electron–hole pair recombination, which can improve the photocatalytic efficiency. With the oxidisation and electron-scavenging ability of Ag and the photocatalysis ability of TiO2, Ag-coated TiO2 can decolour methyl orange (MO) more than bare TiO2. It is a new approach to form Ag-coated TiO2 nanoparticles with a simple system and non-toxic materials. The high photocatalytic effect of Ag-coated TiO2 nanoparticles on pollutant (MO) suggests that it may have a promising future for water and wastewater treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号