首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用夹丝半人工热电偶法,在600- 1200m/min速度范围内对PCD刀具高速铣削SiCp/2009Al复合材料时的切削温度进行了研究,采用单接点热电偶快速标定装置对热电偶(SiCp/2009Al—康铜)测量的热电势进行了标定试验,获得了各种复合材料的温度标定曲线.研究结果表明,在本文试验条件下,铣削温度瞬时最高值可...  相似文献   

2.
《工具技术》2017,(11):30-36
为实现钛基复合材料的高效、低损伤铣削加工及降低该材料的铣削加工成本,对其最佳铣削温度区间进行研究。采用聚晶金刚石(PCD)刀具,研究切削温度对铣削该复合材料时的刀具寿命、刀具磨损和加工表面质量的影响规律。试验结果表明:PCD刀具的最佳铣削温度区间为500℃-600℃,考虑切削过程中刀具磨损对切削温度的影响,PCD刀具铣削钛基复合材料时的最佳初始切削温度区间为420℃-480℃;PCD刀具在最佳铣削温度区间切削时,刀具崩刃和磨粒磨损显著减轻,且适当提高切削速度并减小进给量可进一步延长刀具寿命;在高于最佳铣削温度下切削时,刀具扩散磨损剧烈,且加工表面变质层深度显著增大。研究得出以下结论:PCD刀具高速铣削钛基复合材料时存在最佳铣削温度区间和最佳初始切削温度区间,在最佳铣削温度下切削有利于增强相被刀具原位压入基体或随基体一起协同变形发生转动,从而明显减少加工表面的划痕、微坑洞、撕裂等缺陷。  相似文献   

3.
以原位生成晶须和颗粒混合增强钛基复合材料为车削对象,在切削速度为60~120m/min的条件下,对聚晶金刚石(PCD)和硬质合金刀具开展了车削性能试验研究。研究表明,PCD刀具的切削力为硬质合金刀具的77%~88%,其切削温度为硬质合金刀具的65%~82%。无论是高速切削,还是低速切削,PCD刀具都经历初期剧烈磨损而后稳定磨损的过程,而硬质合金刀具仅有急剧磨损的过程。刀具磨损特征方面,PCD刀具主要发生磨粒磨损和黏结磨损,硬质合金刀具主要发生月牙洼磨损、黏结磨损和扩散磨损。  相似文献   

4.
高速铣削近α钛合金的切削温度研究   总被引:3,自引:0,他引:3  
切削温度不仅直接影响刀具的磨损和耐用度,而且也影响工件的加工精度和已加工表面质量。由于钛合金导热性差和化学亲和性强等原因,通常在其切削加工时切削温度高、刀具磨损严重,致使切削速度难以进一步提高。本文重点对钛合金高速铣削时的切削温度进行试验研究,阐明夹丝半人工热电偶法测温原理和所测热电势信号的物理意义。试验选用了3种不同类型的硬质合金刀具,系统地研究了切削用量、冷却条件及刀具磨损等因素对近α钛合金高速铣削时切削温度的影响。  相似文献   

5.
使用聚晶金刚石(PCD)刀具,在切削速度为1200m/min下对碳化硅颗粒增强铝基(SiCp/Al)复合材料进行铣削加工试验,研究SiCp/Al复合材料经T6热处理后对其高速铣削加工性的影响。结果表明:经T6热处理后,切削力/切削温度明显高于未热处理材料,切屑锯齿形明显,加工过程不稳定性增加,刀具承受冲击作用增大,导致PCD刀具发生较严重的崩刃、剥落、冲击裂纹等磨损形式,从而刀具使用寿命显著低于高速铣削未热处理材料。T6热处理材料高速铣削表面粗糙度Ra/Rz值一般低于未热处理材料,其加工表面变质层深度也显著低于未热处理材料,加工表面存在较少的坑洞、微裂纹、基体撕裂、基体涂覆等加工所致缺陷。  相似文献   

6.
《机械科学与技术》2013,(9):1281-1286
使用聚晶金刚石刀具(PCD),在切削速度为1 200 m/min下,研究了增强颗粒体分比与尺寸、热处理状态和冷却方式等对SiC p/2009Al复合材料高速铣削加工性的影响。结果表明:减小体分比或使用冷却液有助于明显改善SiC p/2009Al复合材料高速铣削加工性。材料经热处理后,加工表面质量明显提高,但切削力显著增大、刀具耐用度明显降低、切屑锯齿形更加明显。体分比一定时,在一定程度范围内增大增强颗粒尺寸有助于降低切削力和切削温度、延长刀具耐用度,但加工表面质量有所下降。  相似文献   

7.
为了分析切削参数对刀具温度的影响,以期在加工过程中改善刀具磨损和提高加工质量。采用以断续车削代替铣削加工的仿铣削试验平台,选取热电偶法对断续切削过程中不同切削参数下的后刀面温度进行测量,通过正交试验和单因素试验研究了切削参数对刀具温度的影响。结果表明,在v=200m/min,f=0.15mm/r,a p=0.75mm时,刀具温度最低,切削速度v和进给速度f对刀具温度的影响高度显著,背吃刀量对刀具温度的影响并不显著。在铍铜合金断续切削过程中,刀具温度在v=500m/min出现峰值,随着进给量的增大,刀具温度呈减小趋势,在f=0.11mm/r出现突变的趋势,与后刀面上的热量生成、热源移动和分配等因素的影响密不可分。  相似文献   

8.
使用聚晶金刚石(PCD)刀具在600-1200m/min切削速度范围内对SiCp/2009Al复合材料进行高速铣削试验。对刀具耐用度、表面粗糙度、切削力、切削温度等工艺参量进行了测量。运用VC++及WXCLIPS软件开发了一套具有自学习功能的模糊专家系统,对SiCP/2009Al复合材料高速铣削加工中的上述工艺参量进行预测。经验证,预测结果与试验结果有很好的一致性。  相似文献   

9.
研究了PCD刀具高速铣削铝基复合材料时刀具几何参数对切削温度的影响。利用A baqus软件,对PCD刀具高速铣削SiCp/Al复合材料薄壁件进行仿真模拟。刀具回转直径为10 mm,切削线速度为300 m/min,改变刀具的前角和后角仿真出铣削时刀具和工件的温度场。通过对比数据,得出刀具角度变化对切削温度的影响规律,从而为实际加工时刀具几何参数的选择提供依据。  相似文献   

10.
为研究高速轴向车铣TC4钛合金时硬质合金刀具的磨损特性,选择S30T硬质合金刀片分别在100m/min、150m/min和200m/min三种切削速度下对TC4进行了轴向车铣试验,分析了不同切削速度对刀具使用性能的影响。研究结果表明:高速轴向车铣TC4钛合金外圆时刀具磨损主要发生在刀片的刀尖刃口及后刀面;磨损形式以粘结磨损为主;刀具的磨损速度随着速度的增加而增大;S30T刀片在100m/min的切削速度下具有较好的刀具耐用度,在150m/min、200m/min的切削速度刀具磨损较快,不适于实际切削加工。  相似文献   

11.
介绍了VMC0656mu高速加工机床在开发过程中的几个关键技术点.  相似文献   

12.
高速硬切削技术及刀具的合理选择   总被引:4,自引:0,他引:4  
介绍了高速硬切削加工的特点并研究了其切屑形状,分析了金刚石、PCBN、陶瓷等硬切削刀具材料的性能以及刀具材料和几何参数的合理选用原则,结合切削试验的实例介绍了高速硬铣削技术的应用。  相似文献   

13.
高速切削加工的刀具材料及其合理选择   总被引:2,自引:0,他引:2  
进一步加强刀具材料的研究和开发,并合理地选择刀具材料,是推动高速切削技术应用和发展的重要前提。介绍了适用于高速切削加工的各种刀具材料。包括涂层刀具、陶瓷刀具、金属陶瓷刀具、立方氮化硼刀具和聚品金刚石刀具等。并分析各种刀具材料的合理选用。  相似文献   

14.
针对电主轴在机床高速化的不足,设计了一种利用水来驱动主轴转动的方案,主轴的驱动和转动一体化,利用水实现了驱动功能、冷却功能、支撑功能,可以应用于中小型零件的的高速加工,例如加工半导体零件。本文分析了机床高速水动主轴的工作原理,对于机床高速水动主轴的结构进行了设计,建立了出口截面的结构模型。对于主轴的的各项参数进行了分析,得到了各个物理量间的关系。  相似文献   

15.
干式冷风车削不锈钢的高速钢刀具磨损试验   总被引:1,自引:0,他引:1  
采用低温冷风射流技术,对高速钢刀具加工不锈钢工件的磨损情况进行了试验研究.加工时采用低温冷风射流空气代替传统的切削液,不仅起到有效的冷却和润滑作用,而且能够避免环境污染,通过于式常温切削和干式冷风切削1Cr18Ni9Ti的不锈钢的对比实验,探讨了干式低温冷风切削对高速钢刀具寿命的影响,并且发现了在冷风切削作用下积屑瘤生成的新特点.文章为推广这种切削方式提供了依据.  相似文献   

16.
综述了碳纤维增强复合材料(CFRP)高速切削刀具的研究现状,重点介绍高速切削CFRP过程中的刀具磨损机理,指出为解决加工中刀具磨损迅速的问题,应合理地选用刀具材料,并且对刀具结构和几何参数进行优化。  相似文献   

17.
介绍了各向同性石墨材料的制备工艺、性能特点及应用场合,综合评述了高速切削加工石墨材料的切削机理、刀具磨损、工艺参数和冷却方式的研究现状,对高速加工石墨的常用刀具进行了性能分析与比较。  相似文献   

18.
在高速切削加工技术的基础上,研究球头铣刀在高速加工过程中切削力的特性和变化规律。以圆弧加工为例,分析了圆弧不同部位刀具加工过程中的受力情况,并给出了高速切削加工中刀具路径在曲面不同曲率处的加工工艺。在保证恒定切削力条件下,使曲面刀具路径工艺编制得到最优处理。  相似文献   

19.
高速切削加工技术及其相关技术发展概况   总被引:15,自引:0,他引:15  
论述了高速切削加工特点及应用,并介绍了与高速切削加工技术相关的技术的发展趋势.  相似文献   

20.
高速干式切削加工技术及其应用   总被引:7,自引:0,他引:7  
综合评述了高速干式切削加工技术的特点及优势,详细分析了实现高速干式切削加工的关键技术(包括机床、刀具及涂层、加工参数、加工辅助技术等),简要介绍了高速干式切削加工技术的实际应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号