首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: This study examined the influences of isoflurane versus halothane anesthesia on basal and agonist-stimulated nitric oxide in the cerebellum of intact rats. Nitric oxide was measured using the hemoglobin-trapping method in an in vivo microdialysis technique. This method uses the stoichiometric reaction of nitric oxide with oxyhemoglobin to produce methemoglobin and nitrate; the change in methemoglobin concentration is measured spectrophotometrically to estimate nitric oxide concentration. METHODS: Male Wistar rats were anesthetized with isoflurane (1.4%) or halothane (1.2%), mechanically ventilated and paralyzed (intravenous pancuronium, 1 mg/kg). Microdialysis probes were implanted into the cerebellum. Bovine oxyhemoglobin dissolved in artificial cerebrospinal fluid was pumped through the probe (2 microl/min) and assayed at 15-min intervals. The glutamatergic agonist, kainic acid (KA, 5 mg/kg, intraarterially), was used to stimulate nitric oxide production. NG-nitro L-arginine methyl ester (L-NAME, 40 mg/kg, intravenously) was used to inhibit nitric oxide synthase. RESULTS: Unstimulated cerebellar nitric oxide concentrations were stable and greater during anesthesia with isoflurane (532+/-31 nM; mean +/- SEM) than with halothane (303+/-23 nM). L-NAME pretreatment reduced nitric oxide concentrations during isoflurane, but not halothane, anesthesia. Infusion of KA increased nitric oxide in both groups; however, the increase in nitric oxide was significantly greater during isoflurane anesthesia. Pretreatment with L-NAME inhibited the response to KA in both groups. CONCLUSIONS: Nitric oxide production in the cerebellum, monitored by microdialysis, was greater during isoflurane anesthesia than during halothane anesthesia. Increased nitric oxide production during isoflurane anesthesia would be expected to impact central neuronal function and cerebral blood flow and vascular resistance.  相似文献   

2.
Hypotension following administration of lipopolysaccharide may be due to excessive production of the potent vasodilator nitric oxide brought about by induction of nitric oxide synthase. The purpose of this study was to determine in conscious, fasted rats what role nitric oxide played in lipopolysaccharide-induced hypotension. When examined by Western immunoblot analysis, inducible nitric oxide synthase immunoreactivity was detected in the aorta at 3 hours and increased over time following administration of intraperitoneal lipopolysaccharide (20 mg/kg). When compared with saline-treated control rats, significant hypotension was observed at 2, 4, and 6 hours following lipopolysaccharide treatment. Blood pressure at 2 hours did not differ significantly from that at 6 hours. Using the Griess reaction to quantify plasma levels of nitrates and nitrites as an index of systemic nitric oxide production, an augmentation in the formation of these nitric oxide metabolites was demonstrated at 4 and 6 hours but not at 2 hours. Subcutaneous administration of the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (5 mg/kg) prevented lipopolysaccharide-induced hypotension, an effect reversed by subcutaneous L-arginine but not D-arginine (350 mg/kg). However, nitric oxide synthase inhibition did not attenuate the ability of lipopolysaccharide to increase plasma nitrate/nitrite levels. These data indicate that lipopolysaccharide-induced production of nitric oxide metabolites does not correlate with lipopolysaccharide-induced hypotension.  相似文献   

3.
Young (approximately 1 month old) male normotensive Wistar-Kyoto rats (n=26) and spontaneously hypertensive rats (n=38) were randomized into three groups treated via drinking water for approximately 2 years with, respectively, placebo, low doses, or high doses of an angiotensin-converting enzyme inhibitor, ramipril (10 microg x kg[-1] x d[-1], non-blood pressure-lowering dose, or 1 mg x kg[-1] x d[-1], blood pressure-lowering dose). Relative to placebo treatment in each respective rat strain, both ramipril dosages increased endothelial constitutive nitric oxide synthase expression (Western blot) and resultant synthesis of nitric oxide (porphyrinic sensor) in freshly excised carotids and thoracic aortas, respectively. Paradoxically, this activity was associated with an increased/decreased superoxide accumulation (chemiluminescence) in freshly excised aortas from 24-/22-month-old normotensive/hypertensive rats. In normotensive rats, relative to placebo treatment, the threefold increase in superoxide accumulation with antihypertensive ramipril treatment is most likely from the >300% increase in endothelial constitutive nitric oxide synthase expression (some of which may be disarranged by local insufficiencies in L-arginine or tetrahydrobiopterin). In hypertensive rats, relative to placebo treatment, the 35% increase in nitric oxide availability by long-term antihypertensive ramipril treatment may contribute to the preservation of the endothelium and prevent its dysfunction by inhibiting superoxide production. Increased nitric oxide production with concomitant decreased superoxide accumulation (approximately one third of placebo levels) correlates positively with the previously reported +40% life span extension for rats with genetic hypertension that were treated with antihypertensive doses of ramipril.  相似文献   

4.
It is widely accepted that interleukin-1beta (IL-1beta), a cytokine produced not only by immune cells but also by glial cells and certain neurons influences brain functions during infectious and inflammatory processes. It is still unclear, however, whether IL-1 production is triggered under nonpathological conditions during activation of a discrete neuronal population and whether this production has functional implications. Here, we show in vivo and in vitro that IL-1beta gene expression is substantially increased during long-term potentiation of synaptic transmission, a process considered to underlie certain forms of learning and memory. The increase in gene expression was long lasting, specific to potentiation, and could be prevented by blockade of potentiation with the N-methyl-D-aspartate (NMDA) receptor antagonist, (+/-)-2-amino-5-phosphonopentanoic acid (AP-5). Furthermore, blockade of IL-1 receptors by the specific interleukin-1 receptor antagonist (IL-1ra) resulted in a reversible impairment of long-term potentiation maintenance without affecting its induction. These results show for the first time that the production of biologically significant amounts of IL-1beta in the brain can be induced by a sustained increase in the activity of a discrete population of neurons and suggest a physiological involvement of this cytokine in synaptic plasticity.  相似文献   

5.
In the last few years, there has been an important increase in interest in nitric oxide (NO) as an intercellular messenger, and its putative role in numerous CNS functions is being continually updated. Arginine, the nitric oxide precursor, has been found in our laboratory to be released following stimulation of the white matter in the cerebellum and of sensory afferents in the thalamus. Since arginine is localized in glial cells while the nitric oxide synthesizing enzyme is localized in different cells (predominantly in neurons), these findings may represent a transfer of arginine from glia to neurons in order to supply the nitric oxide synthase with its substrate. The mechanism underlying this glial-neuronal interaction seems to involve the activation of excitatory amino acid receptors present on glial cells. Our results speak for an intense crosstalk between neurons and glia (activation of glial receptors by neurotransmitter released from neurons) and between glia and neurons (supply of the nitric precursor arginine from glia to neurons). The form in which NO is released from cells has been much debated. The chemical identity of the endothelial-derived relaxing factor in particular is still a matter of dispute, the major contender being NO. and a S-nitrosothiol compound. Based on the strong reactivity of NO for thiols and on the presence of cysteine and glutathione at the mM level intracellularly and microM level extracellularly, we have investigated whether S-nitrosothiols, i.e. S-nitrosoglutathione, may be the potential "package" form in which NO could be stored. We demonstrated, with HPLC coupled to mass spectrometry techniques, the presence of endogenous nitrosoglutathione in rat brain tissue. This packaging of NO in the form of nitrosothiols might serve to facilitate its transfer, prolong its life, and target its delivery to specific effectors. That could confer a specificity of action to the widely diffusable messenger NO, may determine the range of effectiveness of NO and mitigate its adverse cytotoxic effects.  相似文献   

6.
The dual role of nitric oxide as a cytoprotective or a cytotoxic free radical gas has been noted in various types of pathophysiological conditions, including the digestive system. The aim of this study was to examine the role of nitric oxide in the mucosal injury induced by ischemia-reperfusion in the rat small intestine. A transient intestinal ischemia was produced in the catheterized ileal segments of rats by occluding the anterior mesenteric artery for 60 min. Nitric oxide metabolites (NO2- and NO3-) and lactate dehydrogenase activity in perfusates of the intestinal lumen were measured over 5 hr periods. The time-course of histological changes in small intestine was also observed. After ischemia-reperfusion, nitric oxide release in the intestinal lumen increased significantly and the dynamics of nitric oxide release correlated with that of lactate dehydrogenase leakage. The administration of NG-nitro-L-arginine methyl ester (1.0-2.5 mg/kg) inhibited this increased nitric oxide release and the lactate dehydrogenase leakage and afforded protection against the mucosal injury induced by ischemia-reperfusion. In conclusion, the nitric oxide production that was accelerated by ischemia-reperfusion of small intestine may possibly participate in the breakdown of intestinal mucosa after ischemia-reperfusion insult.  相似文献   

7.
8.
The levels of nerve growth factor (NGF) mRNA can be regulated in vitro and in vivo in the hippocampal formation by events associated with pharmacological activation of glutamate receptors. In the present study, the level of NGF mRNA in the hippocampal formation was examined following an intrahippocampal injection of 1 nmole fluorocitrate, which temporarily inhibits the astrocyte metabolic activity in vivo. Consistent with previous findings, fluorocitrate treatment significantly increased glutamate levels and decreased glutamine levels in the dentate gyrus as determined by in vivo microdialysis. The increased ratio of glutamate to glutamine was followed by a significant increase in NGF mRNA expression selectively in dentate gyrus granule cells. The effects of increasing glutamate levels were blocked by pretreatment with 50 nmole 2-amino-5-phosphonovalerate (AP5), a competitive antagonist that acts at the N-methyl-D-aspartate (NMDA) glutamate receptor subtype. These findings suggest that NGF mRNA expression is regulated, in part, by changes in endogenous glutamate levels, partially through enhanced excitatory neurotransmission through NMDA receptors.  相似文献   

9.
Glial synthesis of glutamine, citrate, and other carbon skeletons, as well as metabolic effects of the gliotoxin fluorocitrate, were studied in cultured astrocytes with 13C and 31P NMR spectroscopy. [2-13C]Acetate and [1-13C]glucose were used as labeled precursors. In some experiments glutamine (2.5 mM) was added to the culture medium. Fluorocitrate (20 microM) inhibited the tricarboxylic acid (TCA) cycle without affecting the level of ATP. The net export of glutamine was reduced significantly, and that of citrate increased similarly, consistent with an inhibition of aconitase. Fluorocitrate (100 microM) inhibited TCA cycle activity even more and (without addition of glutamine) caused a 40% reduction in the level of ATP. In the presence of 2.5 mM glutamine, 100 microM fluorocitrate did not affect ATP levels, although glutamine synthesis was nearly fully blocked. The consumption of the added glutamine increased with increasing concentrations of fluorocitrate, whereas the consumption of glucose decreased. This shows that glutamine fed into the TCA cycle, substituting for glucose as an energy substrate. These findings may explain how fluorocitrate selectively lowers the level of glutamine and inhibits glutamine formation in the brain in vivo, viz., not by depleting glial cells of ATP, but by causing a rerouting of 2-oxoglutarate from glutamine synthesis into the TCA cycle during inhibition of aconitase. Analysis of the 13C labeling of the C-2 versus the C-4 positions in glutamine obtained with [2-13C]acetate revealed that 57% of the TCA cycle intermediates were lost per turn of the cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
In cultures of purified microglial cells and astrocytes from newborn rats, the immunocytochemical localization of interleukin-1 beta (IL-1 beta) and inducible nitric oxide synthase (iNOS) using recently developed antibodies, as well as the release of IL-1 beta and nitric oxide (NO), was studied following exposure of the cells to endotoxin [lipopolysaccharide (LPS)]. In the absence of LPS, IL-1 beta- and iNOS-immunoreactive microglial cells and IL-1 beta or NO release were not observed, whereas in the presence of the endotoxin, the production of NO and IL-1 beta by microglial cells dramatically exceeded their synthesis and release by astrocytes. Interestingly, microglial cells cultured for 4-8 days in the presence of astrocytes appeared to lose their ability to produce iNOS, whereas the release of IL-1 beta remained unaltered. Moreover, endotoxin-stimulated microglial cells appeared to regain their ability to synthesize iNOS following their separation from astrocytes. These data show that microglia are primarily responsible for NO and IL-1 beta production in mixed glial cell cultures upon endotoxin stimulation. Moreover, in the presence of astrocytes the induction of iNOS, but not that of IL-1 beta in microglial cells is gradually inhibited.  相似文献   

11.
Although various antioxidants have been tested as therapeutics for endotoxemic subjects, the results of their efficacy are conflicting. Antioxidant biofactor (AOB) is a unique processed grain food that exhibits strong antioxidant activity (Minamiyama et al, J Nutr Sci Vitaminol, 40: 467-477, 1994). The present study was carried out to test the effect of AOB on hepatic injury in rats induced by lipopolysaccharide (LPS). Intravenous administration of LPS induced liver injury with a concomitant increase in hepatic generation of nitric oxide (NO) and 4-hydroxy-2-nonenal (HNE) modified proteins in the control group. The administration of AOB significantly inhibited the LPS-induced hepatic injury and generation of HNE-modified proteins and increased the survival rate of endotoxemic rats without affecting NO generation and plasma levels of tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma). AOB scavenged superoxide radicals without affecting NO production by LPS-stimulated macrophage cell line J 774.2 cells. AOB also inhibited lipid peroxidation induced by LPS in the cells. These results suggested that AOB might scavenge superoxide radicals and decrease toxic metabolites including HNE, thereby inhibiting liver injury in endotoxemic rats.  相似文献   

12.
BACKGROUND: Inflammatory cytokine production contributes to lung injury after lung ischemia reperfusion and during lung transplant rejection. Although nitric oxide has been demonstrated to reduce lung injury associated with the adult respiratory distress syndrome, it remains unknown whether the mechanism of nitric oxide's beneficial effects involves reducing lung macrophage inflammatory cytokine production. The purpose of this study was to determine whether nitric oxide downregulates lung macrophage inflammatory cytokine production. METHODS: Lung macrophages were harvested by bronchoalveolar lavage (10(6) macrophage per milliliter from normal Sprague-Dawley rats, 6 animals per group) and treated under ex vivo tissue culture conditions with the nitric oxide releasing compound S-nitoso-N-acetyl-D, L-penicillamine (0, 10(-5) 10(-4), 10(-3), 10(-2) mol/L) before induction of inflammatory cytokines with endotoxin, (50 ng/mL for 24 hours). Supernatants were assayed for inflammatory cytokine production (tumor necrosis factor alpha, interleukin-1beta) by enzyme-linked immunosorbent assay. RESULTS: Continuous nitric oxide release by S-nitoso-N-acetyl-D, L-penicillamine decreased lung macrophage tumor necrosis factor-alpha and interleukin-1beta production in a dose-dependent fashion (6 rats per group; data were analyzed for significance [p < 0.05] using two-way analysis of variance with Tukey's post-hoc correction). CONCLUSIONS: Nitric oxide decreases inflammatory cytokine production by lung macrophage. The mechanism of nitric oxide's beneficial effects may be partially attributable to decreased production of inflammatory cytokines. Nitric oxide may serve an expanded role for reducing inflammatory cytokine production during acute lung injury, ischemia-reperfusion-induced inflammation, or lung transplant rejection.  相似文献   

13.
In this study we investigated expression of the two isoforms of the prostaglandin-forming enzyme, cyclooxygenase-1 (Cox-1) and cyclooxygenase-2 (Cox-2), in sheep embryos. Using Western blot and immunohistochemical analyses, we demonstrated that Cox-2 was highly expressed in embryos from Day 8 to Day 17 of development whereas Cox-1 was undetectable during this time. The expression of Cox-2 was developmentally regulated. It was maximal between Days 14 and 16. There was a 30-fold increase in Cox-2 content per protein extract between Day 10 and Day 14, corresponding to a 50,000-fold increase in the whole embryo. The expression of Cox-2 declined after Day 16 to become undetectable by Day 25 of pregnancy. Cox-2 was localized in the trophoblastic cells and was not detected in the inner cell mass. The [3H]arachidonic acid metabolites synthesized by Cox-2-rich conceptuses were analyzed by HPLC after short-term embryo culture. Day 14 conceptuses released mainly cyclooxygenase metabolites and to a lesser extent lipoxygenase derivatives. Cyclooxygenase products were 6-keto-prostaglandin (PGF)1alpha 18.2% (+/- 4.2), thromboxane-B2 22.51% (+/- 15.9), PGF2alpha 21% (+/- 11), PGE2 14.5% (+/- 7.4), and PGD2 2.7% (+/- 2.6). Taken together, these results suggest an important role for the Cox-2-dependent cyclooxygenase metabolites during embryo development.  相似文献   

14.
This study assessed sex differences in stable metabolites of nitric oxide and major enzymes involved in antioxidant defense in various regions of rat brain. Nitrite/nitrate levels and activities of superoxide dismutase and catalase were determined in cortex, hippocampus, corpus striatum, midbrain and cerebellum of adult male and female Sprague-Dawley rats. Nitrite/nitrate levels were significantly higher in the cortex and the hippocampus of male than female rats, while catalase activity was higher in the cortex of females than in males. These sex differences may have significant effects on brain function in health and disease.  相似文献   

15.
A chemiluminescence method of detecting nitric oxide (NO) in combination with a microdialysis technique was employed for the real-time measurement of NO production in living rat brain. This method based on the luminol-H2O2 system has a detection limit of 1 nM, and is the most sensitive method currently available for measuring NO. We applied this new technique to rat cerebellum to record the increase of chemiluminescence intensity arising from NO production after the injection of N-methyl-D-aspartate or kainic acid around the microdialysis probe. This highly sensitive method should be useful for the direct clarification of the functions of NO in the central nervous system.  相似文献   

16.
Immunohistochemical techniques were used to examine the distribution of prostaglandin H synthase (PGHS)-2 and neuronal nitric oxide synthase (nNOS) in piglet brain. Samples from parietal cortex, hippocampus, and cerebellum were immersion fixed in 10% formalin, sectioned at 50 microm, and immunostained using specific antibodies against PGHS-2 and nNOS. Immunoreactivity for PGHS-2 was extensive throughout the areas examined. For example, PGHS-2 immunoreactive cells were present in all layers of the cortex, but were particularly dense among neurons in layers II/II, V, and VI. In addition, glial cells associated with microvessels in white matter showed PGHS-2 immunoreactivity. In contrast, nNOS immunoreactive neurons were limited in number and widely dispersed across all layers of the cortex and thus did not form a definable pattern. In the hippocampus, heavy PGHS-2 immunoreactivity was present in neurons and glial cells in the subgranular region, stratum radiatum, adjacent to the hippocampal sulcus, and in CA1 and CA3 pyramidal cells. Immunostaining for nNOS displayed a different pattern from PGHS-2 in the hippocampus, and was mainly localized to the granule cell layer of the dentate gyrus and the mossy fiber layer. In the cerebellum, PGHS-2 immunoreactivity was heavily represented in the Bergmann glia and to a lesser extent in cells of the granular layer, whereas nNOS was detected only in Basket cells. There are four conclusions from this study. First, PGHS-2 immunoreactivity is widely represented in the cerebral cortex, hippocampus, and cerebellum of neonatal pigs. Second, glia cells as well as neurons can show immunoreactivity for PGHS-2. And third, the distribution of nNOS is different from PGHS-2 immunoreactivity in the cerebral cortex, hippocampus, and cerebellum.  相似文献   

17.
The antinociceptive effect of 3 alpha-tropyl 2-(p-bromophenyl)propionate [(+/-)-PG-9] (10-40 mg kg-1 s.c.; 30-60 mg kg-1 p.o.; 10-30 mg kg-1 i.v.; 10-30 micrograms/mouse i.c.v.) was examined in mice, rats and guinea pigs by use of the hot-plate, abdominal-constriction, tail-flick and paw-pressure tests. (+/-)-PG-9 antinociception peaked 15 min after injection and then slowly diminished. The antinociception produced by (+/-)-PG-9 was prevented by the unselective muscarinic antagonist atropine, the M1-selective antagonists pirenzepine and dicyclomine and the acetylcholine depletor hemicholinium-3, but not by the opioid antagonist naloxone, the gamma-aminobutyric acidB antagonist 3-aminopropyl-diethoxy-methyl-phosphinic acid, the H3 agonist R-(alpha)-methylhistamine, the D2 antagonist quinpirole, the 5-hydroxytryptamine4 antagonist 2-methoxy-4-amino-5-chlorobenzoic acid 2-(diethylamino)ethyl ester hydrochloride, the 5-hydroxytryptamin1A antagonist 1-(2-methoxyphenyl)-4-[4-(2-phthalimido)butyl]piperazine hydrobromide and the polyamines depletor reserpine. Based on these data, it can be postulated that (+/-)-PG-9 exerted an antinociceptive effect mediated by a central potentiation of cholinergic transmission. (+/-)-PG-9 (10-40 mg kg-1 i.p.) was able to prevent amnesia induced by scopolamine (1 mg kg-1 i.p.) and dicyclomine (2 mg kg-1 i.p.) in the mouse passive-avoidance test. Affinity profiles of (+/-)-PG-9 for muscarinic receptor subtypes, determined by functional studies (rabbit vas deferens for M1, guinea pig atrium for M2, guinea pig ileum for M3 and immature guinea pig uterus for putative M4), have shown an M4/M1 selectivity ratio of 10.2 that might be responsible for the antinociception and the anti-amnesic effect induced by (+/-)-PG-9 through an increase in acetylcholine extracellular levels. In the antinociceptive and antiamnesic dose range, (+/-)-PG-9 did not impair mouse performance evaluated by the rota-rod test and Animex apparatus.  相似文献   

18.
Macrophages treated with IFN-gamma alone are stimulated to produce nitric oxide. The level of nitric oxide production can be enhanced significantly when IFN-gamma treatment is combined with other agents (e.g., LPS, TNF-alpha, IL-2, etc.). We tested the hypothesis that cAMP plays a role in the IFN-gamma-induced activation of macrophages. Our experiments indicate that factors that increase the concentration of cAMP in the murine macrophage cell line ANA-1 can also enhance IFN-gamma-induced production of nitric oxide. PGE2 and cholera toxin increased the production of nitrite (an indicator of nitric oxide production) in IFN-gamma-treated ANA-1 macrophages by at least twofold. These factors produced no increase in nitric oxide production in the absence of IFN-gamma treatment. The increase in nitric oxide production corresponded to an increase in the accumulation of nitric oxide synthase mRNA without a change in stability of mRNA. Dibutyryl cAMP and Sp-cAMPs (a selective activator of cAMP-dependent protein kinase I and II) also increased nitric oxide production in IFN-gamma-treated macrophages. However, at very high concentrations (i.e., >100 microM), the stimulatory effect was decreased. These studies indicate that elevation of intracellular cAMP causes a dose-dependent, biphasic alteration of IFN-gamma-induced nitric oxide production in murine macrophages. Moreover, they suggest that agents that affect nitric oxide synthesis may do so via modulation of the cAMP second messenger system.  相似文献   

19.
Microencephalic rats were obtained through gestational (for the forebrain) or neonatal (for the cerebellum) administration of the DNA-alkylating agent methylazoxymethanol acetate (MAM), which selectively kills dividing cells during neurogenesis. In the microencephalic cerebellum the specific activity of calcium-dependent nitric oxide synthase (NOS) was decreased by 35-40% at 12, 28 and 70 days of age. Other neurochemical markers not related to granule cells (the neuronal population selectively compromised by neonatal MAM treatment), choline acetyltransferase (ChAT) and glutamate decarboxylase (GAD) were not decreased, but actually increased when determined as specific activity. In agreement with the decreased catalytic activity measured in the tube, the expression of neuronal NOS protein was attenuated as judged from immunohistochemistry and Western blotting. In the microencephalic forebrain, the specific calcium-dependent NOS activity measured in homogenates of the whole hemisphere was significantly increased as compared to normal animals. Accordingly, immunohistochemistry for neuronal NOS, as well as NADPH-diaphorase histochemistry revealed an apparent increase in the density of strongly reactive neurons in the underdeveloped cortex and striatum of microencephalic rats. The results reported here demonstrate that permanent alterations of neuronal NOS activity and expression occur when the development of the brain and its neuronal circuits are severely compromised. Furthermore, the permanent downregulation of neuronal NOS in the cerebellum of microencephalic rats may be exploited for the study of the role of NO in mechanisms of synaptic plasticity such as long term depression (LTD).  相似文献   

20.
In this study, the effect of tetrahydrobiopterin deficiency on the nitric oxide/cGMP pathway has been investigated in cerebellar slices derived from the hph-1 mouse. This animal displays a partial deficiency of tetrahydrobiopterin. Basal levels of cGMP were significantly reduced (-29.5%) in the hph-1 mouse cerebellum compared to controls. Following kainate stimulation (500 microM) cGMP levels increased in both control and hph-1 preparations but were again significantly lower (-29.1%) in the hph-1 mouse. Exposure of slices to the nitric oxide donors, S-nitroso-N-acetylpenicillamine and S-nitroso-glutathione, revealed no difference in cGMP accumulation between the two groups. These findings suggest that the cerebellar nitric oxide/cGMP pathway may be impaired in partial tetrahydrobiopterin deficiency states due to diminished nitric oxide formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号