首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
邝霜  康永林  于浩  刘仁东  严玲 《钢铁》2008,43(3):77-80
在实验室研究了回火温度对C-Si-Mn双相钢力学性能与显微组织的影响.力学性能测定结果表明,250℃以下的低温回火,对改善双相钢的伸长率具有良好作用,但是其它力学性能的变化不明显.高于300℃的高温回火对改善双相钢的延性作用不大,但会引起双相钢的屈服强度升高,抗拉强度、加工硬化与烘烤硬化值降低,使双相钢性能恶化.扫描电镜与透射电镜的观察结果表明,低温回火双相钢的显微组织变化不明显,马氏体为板条状,马氏体前沿的铁素体基体中分布着大量的可动位错,高温回火双相钢的显微组织则有较大变化,马氏体分解,边界变得模糊,岛内出现碳化物颗粒,铁素体中的位错密度减小,位错线附近出现粗大的析出物.高温回火后,马氏体的分解软化以及铁素体中位错密度减小是导致双相钢性能恶化的主要原因.  相似文献   

2.
以提高双相钢的成形性为出发点,围绕提高先进高强钢成形性的最新研究成果,探讨了提高冷轧双相钢延伸性能和扩孔性能的可行性技术措施:双相钢中加Si可以在铁素体中获得较高位错密度,从而提高加工硬化率,有利于延伸率的提高;在中温区等温,可以获得较高的残余奥氏体含量,最终得到回火马氏体+贝氏体+残余奥氏体的多相组织,可以得到较理想的延伸率和扩孔性能。  相似文献   

3.
本文研究了形变热处理对00Cr16Ni6Mo3Cu1(A钢)马氏体时效不锈钢及00Cr26Ni6Mo4Cu1Ti(B钢)奥氏体—铁素体双相不锈钢的力学性能及耐孔蚀性的影响,得到以下结论,(1)形变热处理提高了实验钢的抗张强度和屈服强度,在同一形变温度下,形变量越大,强度提高越多,而塑性略有下降。当形变量>50%时,材料发生脆性断裂。(2)当形变量<50%时,形变热处理对材料的耐孔蚀性影响不大。(3)A钢强化的主要原因是形变使马氏体内位错密度增加,马氏体板条碎化以及马氏体内亚结构的形成。(4)A钢在750℃,X%形变及B钢在750℃,Y_1~Y_2%形变后,力学性能及耐孔蚀性能达“七五”攻关指标要求。  相似文献   

4.
王宏中  邹宗园  李银潇  刘豆豆  翟东林  陈雷 《钢铁》2021,56(12):119-125
 相变诱导塑性(TRIP)双相不锈钢具有优良的强度和塑性,且兼顾经济性,因此工业应用潜力很大。而厘清TRIP型双相不锈钢在循环加载下产生的马氏体相变对其循环力学性能的影响规律,是促进其进一步开发及工业化应用的基础。以TRIP型双相不锈钢Fe-19Cr-0.2 Ni-5Mn-0.2Si为研究对象,开展循环性能及相变特征研究。应用INSTRON试验机,分别进行拉伸试验和应变幅为0.6%的对称循环加载试验,测定试验钢的拉伸力学性能及循环软硬化性能。在循环加载过程中,应用铁素体测量仪测量不同循环周次下的马氏体转变量,分析马氏体相变特征。利用透射电镜,观测典型循环周次下的微观结构,分析马氏体相变和位错结构演化规律。进而,研究马氏体相变和位错结构演化对循环软硬化性能的作用机制。结果表明,试验钢在拉伸条件下,表现出明显的TRIP效应;循环初期马氏体转变速率较快,之后转变速率逐渐降低并且逐渐趋于零;循环软硬化特征可分为3个阶段,初始循环硬化、循环软化和二次循环硬化阶段;初始循环硬化由两相中位错的增殖引起的硬化效应起主导作用;随后的循环软化,由铁素体中低能位错结构所引起的软化效应起主导作用;在二次循环硬化阶段,相变马氏体对材料的硬化起主导作用。总的来说,马氏体相变对试验钢循环加载初期的循环软硬化性能影响较小,但对循环后期的性能影响较大。  相似文献   

5.
本文对双相钢中混合物定律的适用性及其与微观组织特征的关系进行了研究。结果指出,在一级近似下,双相钢的强度是马氏体体积分数的线性函数,而与马氏体中碳含量无关,是随退火温度升高、马氏体的体积分数增加、马氏体的硬度下降、铁素体硬度升高的综合结果。双相钢中的混合物定律为:式中λ是小于1的常数。λ受马氏体的硬度、早期失效、铁素体硬化等因素影响,以此公式容易解释按混合物定律计算的双相钢强度值和实测值之间的偏离。  相似文献   

6.
回火对碳素双相钢拉伸性能的影响   总被引:1,自引:0,他引:1  
本文研究了不同马氏体含量的双相10号及20号钢经80~500℃回火后拉伸性能的变化。结果表明,随回火温度的升高,两种双相钢的抗拉强度均明显下降,而延伸率大为提高。屈服强度在低于160℃回火时略有升高而后下降。高于120℃回火时,屈服平台开始出现并不断增大。剪切滞后分析证实,回火后双相钢强度的下降由两部分组成,即马氏体和铁素体分别承受的载荷的下降。马氏体含量和马氏体合碳量的增高,会使前者所占的比份增大。马氏体的软化本身还减弱了铁素休的相硬化和加工硬化能力,因而对双相钢强度的降低有着重要的影响。马氏体含碳量越高,这种回火效果越明显。低温回火时延性的改善主要归因于铁素体中间隙原子的析出。随回火温度的升高及淬火态马氏体含碳量的增多,马氏体软化则逐渐成为双相钢延伸率大幅度提高的主要原因。  相似文献   

7.
一、双相钢的发展概况钢中“相”甚多,理论上可以把任何两个“相”所组成的钢都叫双相钢。但在实用中一般只把铁素体,马氏体,奥氏体三相中两个“相”并存的称为双相钢,目前工业上应用的双相钢有两大类,一是80%左右铁素体和20%左右马氏体组成的高强度,高成型性双相钢,一是铁素体加奥氏体或马氏体加奥氏体组成的双相钢,本文所介绍的是前一种高成型双相铂。这种双相钢同高强度钢相比,具有屈服强度低,延伸率高的特点;同软钢相比,又具有抗张强度高,无屈服平台的优点,它的  相似文献   

8.
研究了粉末烧结双相不锈钢及其时效后的相结构和强韧性。结果表明,在316L粉末中添加4%(wt)St,用粉末烧结法可以获得奥氏体加18%(Vol)铁素体的双相不锈钢。该双相不锈钢在800℃时效时,沿奥氏体和铁素体界面析出条状σ相,使双相不锈钢的硬度增加,塑性下降。  相似文献   

9.
研究了粉末烧结双相不锈钢及其时效后的相结构和强韧性。结果表明,在316L粉末中添加4%(wt)Si,用粉末烧结法可以获得奥氏体加18%(vol)铁素体的双相不锈钢。该双相不锈钢在800℃时效时,沿奥氏体和铁素体界面析出条状σ相,使双相不锈钢的硬度增加,塑性下降。  相似文献   

10.
烧结-硬化钢的尺寸精度   总被引:1,自引:0,他引:1  
尺寸精度是铁基粉末冶金零件生产工艺的关键参数.除了和标准粉末冶金低合金钢的压制与烧结相关的尺寸变化外,烧结-硬化合金还会产生从奥氏体转变为马氏体的相变.马氏体是钢中密度最低的相,因此,冷却时马氏体的形成会导致零件显著胀大.当马氏体转变为密度较高的铁素体与碳化物显微组织时,回火的淬硬钢发生收缩.这两种相变对零件的尺寸变化都有很大影响.另外,在Cu与C含量高的马氏体区可能有大量残余奥氏体存在.奥氏体相密度最高,所以残余奥氏体会导致压坯胀大较小.除回火处理外,马氏体与残余奥氏体的存在都会影响零件的最终尺寸.本文考察了两个烧结-硬化钢牌号,同时通过不同的后烧结热处理,研究了这两个牌号钢的尺寸变化和显微组织变化.  相似文献   

11.
叶洁云  赵征志  张迎晖  齐亮 《钢铁》2015,50(3):78-83
 利用热膨胀仪研究了合金元素硅和铬对C-Si-Mn-Nb系与C-Cr-Mn-Nb系超高强双相钢连续冷却相变规律的影响;采用单向拉伸试验,以及OM、SEM和TEM等方法对比研究了2种DP钢的组织性能与断口形貌。结果表明:硅元素能够提高[Ac1]和[Ac3]点温度,扩大两相区,促进铁素体相变,并能提高马氏体的回火稳定性,改善其形貌和分布;铬元素的添加导致了奥氏体中碳的分布不均匀,使得马氏体内部同时出现了孪晶与板条状精细结构,而且快冷过程中出现了残余奥氏体和马奥岛组织,部分马氏体会在时效过程中发生分解;两钢的抗拉强度均超过1 000 MPa,伸长率超过15%,且含硅的双相钢各项力学性能均要优于含铬的双相钢。  相似文献   

12.
利用Gleeble-3500热模拟试验机、光学显微镜研究了热处理工艺对980MPa级复相钢显微组织和力学性能的影响。结果显示:钢的显微组织为贝氏体、铁素体及马氏体三相,且加热温度越高,贝氏体及马氏体硬相组织越多,铁素体含量越少,组织均匀性显著提高。钢的屈服强度也随加热温度的提高而逐渐增高,但抗拉强度保持不变。随着缓冷温度的降低,钢中贝氏体及马氏体组织减少,铁素体含量增加,同时力学性能降低。相变-位移曲线显示加热过程中试验钢在730°C左右开始发生奥氏体相变,在860°C左右完成全奥氏体化。在降温过程中试验钢在456°C左右进行贝氏体相变,在244°C至165°C较宽的温度范围内进行马氏体相变,且均热温度越高,贝氏体相变量越大,马氏体量越少。  相似文献   

13.
不锈钢可通过压制与烧结水雾化粉末来制取.粉冶品级的不锈钢有铁素体、奥氏体、马氏体、两相(铁素体+奥氏体)、双相(铁素体+马氏体)以及沉淀硬化(马氏体)等不锈钢.开发双相粉冶不锈钢反映了对较高强度、较高延性与韧性的需求在增长.在本研究中,开发出一种新的低成本粉冶不锈钢,它将双相(铁素体+马氏体)显微结构与沉淀硬化的优点结合在一起.它与其他沉淀硬化合金不同,尽管这种不锈钢在时效后强度与韧性有所提高,但延性与冲击韧度的提高更大.借助组成与显微结构评估了新合金的力学性能.  相似文献   

14.
含铬质量百分比11%的粉末冶金不锈钢高温时具有奥氏体/铁素体双相结构,冷却后奥氏体转变为马氏体,而铁素体不转变,控制马氏体与铁素体的比例,可改变材料的性能,因而可根据需要控制生产粉末冶金奥氏体/铁素体双相不锈钢材料的性能,使这些双相钢既具有马氏体材料的高强度和硬度,又具有铁素体钢的抗腐蚀、塑性和焊接性能。调节马氏体与铁素体的比例可以通过改变材料的化学成分实现,一般对于锻造材料来说公式(1)表示了合金元素与Km 值之间的关系,式中正号表示增加铁素体,负号表示增加马氏体,Km 值<8为10 0 %马氏体,Km 值>10为10 0 %铁素体,Km …  相似文献   

15.
设计了一种新型1500MPa级Si-Mn-Cr-Ni-Mo多组元系低合金、超高强度工程结构钢,研究了回火温度对直接淬火钢组织与力学性能的影响.结果表明,抗拉强度随回火温度的升高而不断降低,屈服强度随回火温度升高先升高后下降,延伸率和冲击功均随回火温度升高呈现先升高、后降低、再升高的变化趋势.分析认为,回火过程组织演变的物理机制一方面包括板条马氏体和位错亚结构的回复、再结晶软化过程,另一方面包括残余奥氏体的分解与马氏体中过饱和碳的脱溶及析出第2相的强化机制综合作用.250℃回火后,板条马氏体内析出ε碳化物;400℃回火后ε碳化物明显粗化,产生回火脆性;600℃回火后部分析出相在奥氏体中形核,在马氏体基体内长大和粗化,最终形态为近似球形,另一部分析出相在马氏体内形核、生长,呈现椭球形或矩形.  相似文献   

16.
本文通过对试样进行低倍试验和金相显微组织观察,对AT25—6铁索体奥氏体双相钢产生脆裂的原因进行了系统地分析和讨论。通过试验分析表明,铁素体基体上分布有较多的σ相是造成本次AT25—6铁素体奥氏体双相钢产生脆裂的主要原因。  相似文献   

17.
本文观察了经台阶淬火(完全奥氏体化后预冷至α+γ双相区然后淬火)所得较粗品粒(d_F=18μm)双相钢的拉伸行为及断裂特征。结果表明,双相钢中铁素体与马氏体的组织性能和单相的有明显差异。经200℃回火后强、塑性配合较好。马氏体含量较低时,颈缩造成相界处的应力集中,使铁素体以解理方式起裂,裂纹力图绕过马氏体而扩展。少量马氏体以微孔汇集方式被拉断。马氏体含量超过50%时,裂纹发生在沿晶界分布的铁素体内的夹杂处,并大多沿相界在铁素体中扩展。  相似文献   

18.
《钢铁钒钛》2021,42(1):184-190
利用光镜、扫描电镜、透射电镜、EBSD、Thermo-Calc热力学软件、JMatPro软件研究了Nb-Ti复合微合金化800 MPa级扭力梁用钢热轧板在汽车扭力梁围管和焊缝矫直过程中的开裂原因。对三种不同成分的试验钢的显微组织和纳米析出相的研究结果表明,围管和焊缝矫直开裂的主要原因为:3#钢中添加了Cr、Mo、V元素,使钢的TTT曲线右移,提高了奥氏体的稳定性,使轧后冷却过程中生成了大量的含有高密度位错的板条马氏体和板条铁素体等硬相组织,而等轴铁素体的数量较少,而且晶粒大小不均匀,在力学性能上表现为抗拉强度偏高。由于板条铁素体和板条马氏体含有高密度位错,降低了钢的塑韧性,使其在围管和焊缝矫直过程中容易开裂。  相似文献   

19.
加入Co~N对17Cr钢热处理后的机械性能、显微组织和喷水冲蚀都会产生影响,对该钢的硬度、晶粒尺寸、相的体积分数和冲蚀损坏进行了检测。在热处理温度范围内,加Co—N的17Cr钢的硬度和强度比不加的高,在950—1100℃淬火温度范围内,晶粒尺寸、硬度和残余奥氏体及8铁素体的体积分数随淬火温度的提高而增大,加Co—N的17Cr的晶粒比不加的细,残余奥氏体及8铁素体的体积分数比不加的小,基体中Co和N的含量用EDAX和俄歇检测分析。因此,Co—N加入17Cr钢后能产生固溶强化,并抑制基体中8铁素体的形成。在回火处理条件下,硬度分为3个区域(基体软化区在250~350℃;二次硬化和回火脆化区在400~500℃;基体软化和第二相析出区在550—700℃)。所有加Co—N和不加Co—N的17Cr钢,依据回火温度都有相似的硬度模式,但对于加Co—N的17Cr钢高压喷水试验,冲蚀深度小于不加Co—N的17Cr钢。  相似文献   

20.
设计了不同相构成的超高强DH钢,抗拉强度均大于1300 MPa,组织由铁素体、马氏体、残留奥氏体和极少量碳化物构成。对比了不同相构成对超高强DH钢力学性能和应变硬化行为等的影响,并深入研究了残留奥氏体在超高强度DH钢中的作用机制。结果表明:随着马氏体和残留奥氏体体积分数的增大,铁素体体积分数的减小,实验钢屈服和抗拉强度同时升高,而延伸率呈先增大后减小趋势。软韧相铁素体体积分数的减小和硬相马氏体体积分数的增大导致屈服强度和抗拉强度增加。相对于回火马氏体,淬火马氏体对强度的提升更显著,在拉伸过程中转变的残留奥氏体的量是引起延伸率变化的主要原因,组织中显著的带状组织会造成颈缩后延伸率的明显降低。通过对应变硬化行为的分析表明,随着真应变的增大,应变硬化率呈减小的趋势,在真应变大于2%后的大范围内,对于应变硬化率,DH1>DH2>DH3,主要与铁素体体积分数有关;在真应变大于5.73%后,DH2钢的应变硬化率高于DH1钢和DH3钢,主要与DH2钢中更显著的TRIP效应有关。除了残留奥氏体体积分数,残留奥氏体中的碳含量对TRIP效应同样有显著的影响。较高比例的硬相马氏体组织结合适当比例的软韧相铁素体和残留奥氏体有助于DH2钢获得最良好的强塑积13.17 GPa·%,其中屈服强度达880 MPa,抗拉强度达1497 MPa,均匀延伸率为6.71%,总伸长率为8.8%,颈缩后延伸率为2.09%,屈强比0.59。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号