首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
穆柄臻  陈海龙  何燕 《橡胶工业》2022,69(10):0790-0797
介绍近年来碳纳米管(CNTs>)改性的方法,包括共价键修饰和非共价键修饰。概述CNTs/橡胶复合材料的制备方法,包括机械共混法、熔融共混法、溶液共混法、喷雾干燥法、胶乳共混法、淤浆共混法,分别指出这些方法的优势及存在的问题。从CNTs/橡胶复合材料的力学性能、导热性能和导电性能着手,概述其研究进展,分析CNTs/橡胶复合材料领域存在的问题,展望CNTs/橡胶复合材料的制备及性能发展。  相似文献   

2.
《弹性体》2015,(6)
概述了碳纳米管(CNTs)/橡胶复合材料的制备方法,主要介绍了机械共混法、溶液共混法、乳液共混法及原位聚合法的研究进展,综述了CNTs在天然橡胶、顺丁橡胶、丁苯橡胶、乙丙橡胶及硅橡胶中的应用及CNTs对橡胶机械性能、导热性能、导电性能、微波吸收性等方面的影响。最后对CNTs/橡胶复合材料的发展进行了展望。  相似文献   

3.
碳纳米管/橡胶复合材料的研究进展   总被引:1,自引:0,他引:1  
介绍了碳纳米管(C NTs)的预处理方式,主要有纯化处理和表面改性2种方式,概述了CNTs/橡胶复合材料的制备方法,包括机械混炼法、溶液共混法和喷雾干燥法,以及复合材料的物理机械性能、电学性能、热学性能等性能,并根据复合材料的性能缺陷提出今后的研究方向.  相似文献   

4.
乳液共混法制备天然橡胶复合材料研究进展   总被引:5,自引:3,他引:2  
天然橡胶的应用十分广泛,在其应用过程中,一般需要通过共混改性制备综合性能更加优异的天然橡胶复合材料。本文总结了近年来国内外使用乳液共混法制备天然橡胶复合材料的研究进展。介绍了天然橡胶与炭黑、粘土、白炭黑、碳纳米管、石墨烯等填料乳液共混的新方法。对比了乳液共混法及传统机械共混法制备的橡胶复合材料在加工流程、填料分散情况、材料力学性能等方面的差异;说明了乳液共混法制备天然橡胶复合材料的优势。并对乳液共混法的发展前景进行了展望。  相似文献   

5.
介绍石墨烯/橡胶复合材料的制备方法及应用研究进展。石墨烯/橡胶复合材料的制备方法主要包括机械共混法、溶液共混法、乳液共混法、熔融混合法以及多种方法联用。与未添加石墨烯的胶料相比,石墨烯/橡胶复合材料的导电性能、导热性能、物理性能和液体/气体阻隔性能等明显提高,综合性能优异。石墨烯/橡胶复合材料的研发工作重点为创新制备方法,提高制备的经济性和环保性,加大基础研究与应用研究的力度,加快科研成果转化。  相似文献   

6.
综述了聚合物/碳纳米管复合材料的制备方法及其电学性能的研究进展。评述了聚合物/碳纳米管复合材料常用的制备方法,包括溶液共混、熔融共混、原位聚合等,特别强调碳纳米管在聚合物基体中的分散;介绍了采用聚乙烯、环氧树脂等为基体的碳纳米管复合材料电学性能研究的两个方面:导电渗流行为和正温度系数效应;对聚合物/碳纳米管导电复合材料研究中存在的问题如工艺改进、机理解释等进行了讨论,并展望了这一类材料的发展前景。  相似文献   

7.
聚氨酯/碳纳米管复合材料的研究进展   总被引:3,自引:2,他引:1  
近年来,利用碳纳米管制备聚氨酯复合材料引起人们的高度重视。本文对聚氨酯/碳纳米管复合材料的研究进展状况进行综述。概述了聚氨酯和碳纳米管的性质以及碳纳米管的改性处理方法;介绍了聚氨酯/碳纳米管复合材料的制备方法,包括物理共混法和原位聚合法;讨论了碳纳米管对复合材料力学性能、电学性能、光学性能以及其他性能的影响。结果表明,碳纳米管的加入使得复合材料在上述性能方面都有不同程度的改善。最后探讨了该研究领域存在的问题及今后可能的发展方向。  相似文献   

8.
赵敏 《橡胶工业》2014,61(6):358-358
正由北京化工大学申请的专利(公开号CN102924763A,公开日期2013-02-13)"一种高模量、低生热的碳纳米管/橡胶复合材料制备方法",提供了一种高模量、低生热的碳纳米管/橡胶复合材料制备方法,即利用等离子体改性方法在碳纳米管表面沉积一层1~2nm的聚丙烯酸无定形层,将这种改性后的碳纳米管与硅烷偶联剂通过机械共混的方法加入到橡胶中,并采用高温状态下热辊处理的技术进一步增强其界面结合作用,提高分散效果;最后在高温高压状态下硫化制得产品。涉及的橡胶为天然橡胶、异戊橡胶、丁苯橡  相似文献   

9.
采用哈克转矩流变仪分别将多壁碳纳米管(MWCNT)及聚合物包覆多壁碳纳米管(P-MWCNT)与1,2-聚丁二烯橡胶(1,2-PB)共混,制备1,2-PB/碳纳米管复合材料。研究了MWCNT用量对1,2-PB的硫化行为、拉伸性能和导电性能的影响及硫化胶的动态力学性能。结果表明,将MWCNT与液体聚丁二烯(PB)研磨,可使聚合物包覆在MWCNT表面,提高MWCNT在1,2-PB橡胶中的分散性,增强MWCNT与1,2-PB的界面粘合力。1,2-PB与MWCNT共混所制得的硫化胶物理性能优于1,2-PB/P-MWCNT。MWCNT能显著提高硫化胶的导电性能。  相似文献   

10.
为了提升导电橡胶复合材料在结构健康监测中的应用潜力,通过开炼共混制备多壁碳纳米管(MWCNT)改性氯丁橡胶(CR)-天然橡胶(NR)共混复合材料,探讨CR/NR共混比(质量比)和MWCNT质量分数对复合材料导电性能、力学性能以及电阻-应变响应性能的影响机制。结果表明:当CR/NR共混比为5/5时,MWCNT质量分数的导电渗流阈值最低(仅为0.9%)。随着碳纳米管质量分数增加,材料的强度和刚度有所提升。复合材料在静态和循环载荷下表现出大应变范围(ε>350%)和良好动态电阻-应变响应重复性。最终通过理论模拟与实验结果的对比,建立基于隧道效应理论的电阻-应变定量关系模型。  相似文献   

11.
机械混炼制备碳纳米管/天然橡胶复合材料特性分析   总被引:7,自引:2,他引:7  
通过机械混炼方法将碳纳米管与天然橡胶复合,与炭黑补强样品相比,碳纳米管在橡胶中的混入速度快,功率消耗低,温升幅度小,混炼胶的硫化焦烧时间略有增加,硫化返原现象减轻,硫化剂用量应适当增加。加入碳纳米管后,橡胶DSC曲线中的结晶熔融峰面积减少,交联反应放热峰变宽。碳纳米管复合材料的回弹、压缩疲劳性能明显优于炭黑补强样品,耐老化性能较好,拉伸、撕裂性能水平有待提高。  相似文献   

12.
A suspension of carbon nanotubes in natural latex was obtained by liquid mixing and then was used to prepare powder natural rubber composites modified with carbon nanotubes by means of spray drying process. The composite powders were round‐like and fine, with an average diameter of less than about 5 μm. The dispersion of carbon nanotubes in the rubber matrix was improved remarkably compared with that obtained by the mechanical mixing method. By means of vulcanization tests, it was found that the addition of vulcanizing agent necessary for the powder rubber containing carbon nanotubes should be evidently greater than that in rubber prepared by mechanical mixing, there evidently existed vulcanization reversions for the natural rubber prepared by mechanical mixing, which disappeared in the powder rubber containing carbon nanotubes prepared by the spray drying process. The mechanical properties of the powder natural rubber containing carbon nanotubes were much improved because of the modification effect of carbon nanotubes in rubber. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4697–4702, 2006  相似文献   

13.
In the presence of multiwalled carbon nanotubes (MWCNT), polar nitrile-butadiene rubber (NBR) and nonpolar ethylene propylene diene rubber (EPDM) blends were prepared following a melt mixing method. For the preparation of MWCNT filled EPDM/NBR blends, two mixing methods were used: direct mixing and the masterbatch dilution method. Various physical, mechanical, and morphological properties are explored to elucidate the dispersion behavior of MWCNTs. It was concluded that the preparation method influences the dispersion of the nanotubes in different rubber phases and the properties of these blends are controlled by the degree of dispersion of the nanotubes in the two phases.  相似文献   

14.
Industry is constantly demanding for materials with differential properties that explores nanoscale fillers functionality. Unfortunately, most of the papers present processing methods that are hard to scale up. Effects in addition different amounts of multiwall carbon nanotubes (MWCNT) and few-layer graphene (FLG) on cure behaviour, viscoelastic, mechanical and electrical properties of a hydrogenated nitrile butadiene rubber (HNBR) are investigated and compared with those composites having carbon black (CB) as filler. Looking for scale up the produced nanocomposites, rubber composites were produced in a closed mixing chamber by melt mixing with unmodified fillers. Addition of nanotubes reduces curing time. Microstructural analyses indicate that FLG cannot be easily dispersed by this methodology. Significant improvement in mechanical properties is observed with MWCNT addition, with 940% modulus increment regarding to the pure polymer and also, in lower intensity, in HNBR/FLG composites. Moreover, HNBR/MWCNT composites presented a sharp reduction in electrical resistivity at low loading level.  相似文献   

15.
碳纳米管/天然橡胶复合材料的结构与性能   总被引:7,自引:0,他引:7  
通过机械混炼法制备了碳纳米管(CNT)/天然橡胶(NR)复合材料,研究了CNT的预处理方式对复合材料结构与性能的影响。结果表明,与NR相比,CNT/NR复合材料的硫化返原现象减轻,硫化后凝胶质量分数降低,硫化剂用量应适当增加,由混酸氧化处理的CNT填充橡胶复合材料的硫化迟滞效应明显;复合材料内部存在CNT的富集区域和CNT含量很少的橡胶区域,CNT与NR之间的界面结合作用不好;由HF处理的CNT填充橡胶复合材料的整体性能最好,但受CNT在橡胶基体中的不良分散状态及界面性质的影响,其力学性能不高。  相似文献   

16.
The extensively used latex mixing approach to prepare graphene can improve the graphene dispersion but meets some challenges in the preparation of high content carbon black filled rubber system like a rubber tire. Owing to the high melt viscosity of the rubber/graphene masterbatch, the dispersion of carbon black is not perfect during twin-roll mixing and some aggregates will be formed. Here we proposed a wet compounding process, combined with ultrasonically assisted latex mixing, named as the WCL method to prepare reduced graphene oxide/carbon black/natural rubber (rGO/CB/NR) composites. The morphological observations confirmed that both graphene and carbon black can be evenly dispersed in the rubber composites. The incorporation of rGO also improves the hardness, thermal conductivity and anti-aging properties of the composites. The rGO/CB/NR composites prepared by the WCL method possess better mechanical properties compared to conventional latex mixing. The entanglement-bound rubber tube model was utilised to understand the reinforcing mechanism.  相似文献   

17.
以碳纳米管(CNT)作为核,密胺树脂(MF)作为壳,苯乙烯马来酸酐共聚物(SMA)为乳化剂,原位聚合制备微胶囊化碳纳米管(CNT-MF),并将包覆后的碳纳米管作为填料添加到硅橡胶泡沫中,制备了CNT-MF/硅橡胶泡沫复合材料.探讨了核/壳质量比对微胶囊化碳纳米管的包覆效果的影响,同时研究了微胶囊化碳纳米管用量对硅橡胶泡...  相似文献   

18.
Composites with damping–absorption performance and storage-loss behavior based on carbon nanotubes as a modifier and zinc titanate/room temperature vulcanized silicone rubbers as a matrix were fabricated by a reactive solution mixing process, wet ball milling, and the three-roller milling method. The microstructures, chemical structures, and morphologies of the composites were characterized by scanning electron microscopy, infrared spectroscopy, and X-ray diffraction. The thermal stabilities were investigated by thermogravimetric analysis. The effect of carbon nanotubes on the comprehensive performance of the carbon nanotube/zinc titanate/room temperature vulcanized silicon rubber composites was investigated. It was found that doping with carbon nanotubes can improve the comprehensive performance of the zinc titanate/room temperature vulcanized silicon rubber complex matrix. The best comprehensive properties were d33?=?72 pC/N, storage modulus?=?4,100?MPa, loss modulus?=?400?MPa, damping coefficient?=?0.23, and absorption coefficients?=?0.4–0.6 for 4?wt% carbon nanotube/zinc titanate/room temperature vulcanized silicon rubber. In addition, the lattice parameters of zinc titanate were found to be highly dependent on the carbon nanotube content, and the absorption and damping performance of the composites were dependent on the frequency and temperature.  相似文献   

19.
The outstanding properties of carbon nanotubes have generated scientific and technical interests in the development of nanotube-reinforced polymer composites. Therefore, we investigated a novel mixing approach for achieving a good dispersion of multiwalled carbon nanotubes (CNTs) in a rubber blend. In this approach the CNTs were incorporated into a 50:50 blend of solution-styrene-butadiene rubber and butadiene rubber. First, the CNTs were predispersed in ethanol and then this CNT-alcohol suspension was mixed with the rubber blend at elevated temperature. The rubber nanocomposites prepared by such method exhibit significantly enhanced physical properties already at very low nanotube concentrations. Additionally, we have analysed the dielectric and thermal properties of the compound. The high aspect ratio of the carbon nanotubes enabled the formation of a conductive percolating network in these composites at concentrations below 2 wt.%. In contrast to the electrical conduction behaviour, the thermal conductivity of the composites has not been influenced significantly by the presence of carbon nanotubes. Dynamic mechanical analysis indicates that the incorporation of CNTs affects the glass transition behaviour by reducing the height of the tan δ peak considerably. Above the glass transition temperature the storage modulus has been increased after incorporation of a small amount of CNTs. Finally, the ‘Payne effect’, an indication of filler-filler interactions, was observed at very low concentrations of CNT in the rubber matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号