首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A film formulation containing Kollicoat MAE 30 D, Kollidon 30, Sicovit Rot 30, titanium dioxide, talc, and a plasticizer for the aqueous manufacture of enteric coatings was studied for the coagulations occurring with certain plasticizers and for differences in resistance on highly swellable caffeine cores. Also included in these investigations were the latices Kollicoat MAE 30 DP and Eudragit L 30 D-55. The coagulations occurring with all three film latices can be attributed to the presence of Kollidon 30 together with certain excipients. Preparations with Kollidon 30, but without color pigments, showed no tendency to coagulate. The advantage of propylene glycol (PG) compared to other plasticizers such as triethyl citrate (TEC) is that no coagulations occurred, even in the presence of Kollidon 30 and color pigments. Among the Kollidon 30–free film formulations examined, a plasticizer content of 10–15% PG or TEC gave the best results. Optimal pigment distribution in the coat originally produced by Kollidon 30 can optionally be achieved by prolonged stirring of the pigment suspension. The resistance can be further improved by inclusion of a subcoating with Kollidon VA 64. Kollicoat MAE 30 D and MAE 30 DP and Eudragit L 30 D-55 showed identical behavior in this study.  相似文献   

2.
A film formulation containing Kollicoat MAE 30 D, Kollidon 30, Sicovit Rot 30, titanium dioxide, talc, and a plasticizer for the aqueous manufacture of enteric coatings was studied for the coagulations occurring with certain plasticizers and for differences in resistance on highly swellable caffeine cores. Also included in these investigations were the latices Kollicoat MAE 30 DP and Eudragit L 30 D-55. The coagulations occurring with all three film latices can be attributed to the presence of Kollidon 30 together with certain excipients. Preparations with Kollidon 30, but without color pigments, showed no tendency to coagulate. The advantage of propylene glycol (PG) compared to other plasticizers such as triethyl citrate (TEC) is that no coagulations occurred, even in the presence of Kollidon 30 and color pigments. Among the Kollidon 30-free film formulations examined, a plasticizer content of 10-15% PG or TEC gave the best results. Optimal pigment distribution in the coat originally produced by Kollidon 30 can optionally be achieved by prolonged stirring of the pigment suspension. The resistance can be further improved by inclusion of a subcoating with Kollidon VA 64. Kollicoat MAE 30 D and MAE 30 DP and Eudragit L 30 D-55 showed identical behavior in this study.  相似文献   

3.
For coating metoprolol tartrate granules, coating dispersions of Eudragit RS 30 D containing 6%, 12%, or 18% (based on polymer weight) of one of the following plasticizers were used: polyethylene glycol 400 (PEG400), propylene glycol (PG), tributyl citrate (TBC), and triethyl citrate (TEC). The release of metoprolol tartrate from these coated granules was determined at pH 1.2 and 7.4. Slower release resulted from the use of each plasticizer, being slower with increasing concentration of the plasticizer. Release was faster with the more water soluble PEG400 and PG than with TBC and TEC. pH-dependent release was observed with PEG400, PG, and TBC, while TEC gave pH-independent release of drug.  相似文献   

4.
Theophylline pellets were coated with Eudragit RS 30 D in a miniature fluid-bed pan coater called MiniWiD developed recently. The dispersions were plasticized with varying amounts of triethyl citrate (TEC), dibutyl phthalate (DBP), and polyethylene glycol 6000 (PEG) and applied at different temperatures ranging from 25 to 45 °C. Theophylline release was tested by dissolution using the USP Apparatus 2 (paddle) in 0.1 N hydrochloric acid under sink conditions over 6 hours.

At a coating level of 4 % (0.7 mg/cm2) sustained-release profiles were obtained from dispersions plasticized with TEC or DBP. By reducing the amount of plasticizer from 20 to 10%, films with higher permeabilities were obtained. This effect was compensated by tempering the pellets at 50 deg;C for 24 hours. The coating temperature had little effect on the dissolution profiles of TEC-plasticized films and no effect on films with DBP.

Coatings plasticized with 20% PEG were applied at temperatures ranging from 25 to 45 °C. These films required a coating level of about 18 % (3.3 mg/cm2) to provide comparable sustained-release properties. In contrast to DBP and TEC, a strong influence of the coating temperature on the release rates was observed in which higher temperatures led to slower release rates. This behavior can be explained by the minimum film-forming temperature (MFT). Since PEG does not lower the MFT of Eudragit RS 30 D, the application of these films below the MFT of 45 °C is associated with a lower degree of film formation.  相似文献   

5.
Abstract

Theophylline pellets were coated with Eudragit RS 30 D in a miniature fluid-bed pan coater called MiniWiD developed recently. The dispersions were plasticized with varying amounts of triethyl citrate (TEC), dibutyl phthalate (DBP), and polyethylene glycol 6000 (PEG) and applied at different temperatures ranging from 25 to 45 °C. Theophylline release was tested by dissolution using the USP Apparatus 2 (paddle) in 0.1 N hydrochloric acid under sink conditions over 6 hours.

At a coating level of 4 % (0.7 mg/cm2) sustained-release profiles were obtained from dispersions plasticized with TEC or DBP. By reducing the amount of plasticizer from 20 to 10%, films with higher permeabilities were obtained. This effect was compensated by tempering the pellets at 50 deg;C for 24 hours. The coating temperature had little effect on the dissolution profiles of TEC-plasticized films and no effect on films with DBP.

Coatings plasticized with 20% PEG were applied at temperatures ranging from 25 to 45 °C. These films required a coating level of about 18 % (3.3 mg/cm2) to provide comparable sustained-release properties. In contrast to DBP and TEC, a strong influence of the coating temperature on the release rates was observed in which higher temperatures led to slower release rates. This behavior can be explained by the minimum film-forming temperature (MFT). Since PEG does not lower the MFT of Eudragit RS 30 D, the application of these films below the MFT of 45 °C is associated with a lower degree of film formation.  相似文献   

6.
Neutral pellets were loaded with bisacodyl and enteric-coated with hydroxypropyl methylcellulose acetate succinate (HPMCAS), carboxymethyl ethylcellulose (CMEC), cellulose acetate trimellitate (CAT), and poly(ethylacrylate, methacrylic acid) (Eudragit L 30 D) in a miniature fluid-bed pan coater called MiniWiD. Gastric juice resistance was tested by dissolution using USP Apparatus 2 (paddle) in 0.1 N hydrochloric acid under sink conditions over 6 hours. As a measure of enteric coating quality the USP specifications were used meaning that no more than 10 % of the drug should be released within 2 hours.

Organic-solvent based films of HPMCAS, CMEC and CAT at a coating level of 18 to 25 % provided gastroresistance for more than 6 hours. Aqueous suspensions of HPMCAS and CMEC as well as the ammonium salt aqueous solutions of CAT produced films with a short gastroresistance of below 0.6 hours. By doubling the coating level of water-based HPMCSD films the protection was prolonged to 3.4 h.

Enteric coatings were obtained from all aqueous latex dispersions of Eudragit L 30 D at a coating level of 24 %. The alteration of coating temperature between 25 and 45 °C had no significant effect on the release rates, whereas the variation of type and amount of plasticizer led to a different release rate after 2 hours. Best protection was obtained using films plasticized with 20 % of dibutyl phthalate (DBP) allowing a release of only 4 % of the drug in 6 hours although the application temperature was 15 °C below the minimum film-forming temperature (MFT). All coatings dissolved in artificial intestinal fluid within 15 minutes.  相似文献   

7.
Abstract

Neutral pellets were loaded with bisacodyl and enteric-coated with hydroxypropyl methylcellulose acetate succinate (HPMCAS), carboxymethyl ethylcellulose (CMEC), cellulose acetate trimellitate (CAT), and poly(ethylacrylate, methacrylic acid) (Eudragit L 30 D) in a miniature fluid-bed pan coater called MiniWiD. Gastric juice resistance was tested by dissolution using USP Apparatus 2 (paddle) in 0.1 N hydrochloric acid under sink conditions over 6 hours. As a measure of enteric coating quality the USP specifications were used meaning that no more than 10 % of the drug should be released within 2 hours.

Organic-solvent based films of HPMCAS, CMEC and CAT at a coating level of 18 to 25 % provided gastroresistance for more than 6 hours. Aqueous suspensions of HPMCAS and CMEC as well as the ammonium salt aqueous solutions of CAT produced films with a short gastroresistance of below 0.6 hours. By doubling the coating level of water-based HPMCSD films the protection was prolonged to 3.4 h.

Enteric coatings were obtained from all aqueous latex dispersions of Eudragit L 30 D at a coating level of 24 %. The alteration of coating temperature between 25 and 45 °C had no significant effect on the release rates, whereas the variation of type and amount of plasticizer led to a different release rate after 2 hours. Best protection was obtained using films plasticized with 20 % of dibutyl phthalate (DBP) allowing a release of only 4 % of the drug in 6 hours although the application temperature was 15 °C below the minimum film-forming temperature (MFT). All coatings dissolved in artificial intestinal fluid within 15 minutes.  相似文献   

8.
Background: Limited information on thermally cured dry-powder coatings used for solid dosage forms has been available in the literature. Aim: The aim of this study was to characterize the film formation process of Eudragit® L 100-55 dry-powder coatings and to investigate the influence of film additives on melt viscosity and surface tension. Methods: The coating process employed no liquids and the plasticizer was combined with the polymer using hot melt extrusion. Thermoanalytical methods including differential scanning calorimetry and thermogravimetric analysis (TGA) were used to investigate the thermal properties of the dry-coating formulations. The rheological behavior of the coating formulations were characterized with the extrusion torque, and the surface energy parameters were determined from contact angle measurements. The influence of the level of triethyl citrate (TEC) as plasticizer and polyethylene glycol (PEG) 3350 in the polymer film on film formation was investigated using a digital force tester. Results: TGA confirmed thermal stability of all coating excipients at the investigated curing conditions. Increasing TEC levels and the addition of PEG 3350 as a low melting excipient in the coating reduced the viscosity of the polymer. Plasticization of the polymer with TEC increased the surface free energy, whereas the admixture of 10% PEG 3350 did not affect the surface free energy of Eudragit® L 100-55. The spreading coefficient of the polymers over two sample tablet formulations was reduced with increasing surface free energy. During the curing process, puncture strength, and elongation of powder-cast films increased. The effect of curing time on the mechanical properties was dependent on the plasticizer content. Conclusions: The incorporation of TEC and PEG 3350 into the Eudragit® L 100-55 powder coating formulation improved film formation. Mechanical testing of powder-cast films showed an increase of both elongation and puncture strength over the curing process as criterion for polymer particle fusion, where film formation progressed faster at high plasticizer levels.  相似文献   

9.
低聚醚/聚氨酯固体电解质的形态及离子导电性能   总被引:2,自引:0,他引:2  
采用聚氧化乙烯或聚二氧戊环作为增塑剂对分别以聚四氢呋喃(PTHF)和聚己二酸乙二醇酯(EGEGPU)为软段的聚氨酯固体电解质体系进行了共混增塑,并对所得固体电解质体系的形态和离子导电性能进行了讨论,结果表明,低聚醚可以作为增塑剂而有效地改善聚氨酯固体电解质体系的链段柔顺性及聚集形态,从而提高体系的离子导电性能,PEG可以对EGPU固体电解质体系进行有效的增塑改性,其中EGPU132-PEG600-12的离子电导率在室温下可以达到10^-5S/cm以上;PDXL对EGPU固体电解质增塑改性效果较差,但是PDXL是PTHFPU固体电解质体系的有效的增塑剂。  相似文献   

10.
The present research investigates the enhancement of the dissolution rate of celecoxib by using spray-drying to prepare a solid dispersion with various polymers, namely Kollicoat IR? (Kollicoat), polyvinyl alcohol (PVA) 22000, or polyethylene glycol 6000 (PEG). The investigated drug-to-polymer mass ratios were 1:1, 1:2, and 1:4 by weight. Hydroalcoholic or methylene chloride solvent systems were used. The obtained yields ranged from 65% to 78%, whereas the entrapment efficiencies were between 68% and 82%. The results revealed an increase in the dissolution rate of the prepared particles up to 200% within 20 min. The prepared particles were investigated using differential scanning calorimetry, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The increased dissolution rate was attributed to hydrogen bond formation between celecoxib and each polymer together with the reduced size of the formed particles offering a greater overall surface area. It was concluded that spray-drying may be considered a successful one-step technique to improve the dissolution rate of celecoxib when using Kollicoat, PVA, or PEG as the carrier polymer.  相似文献   

11.
分别采用乙酰柠檬酸三正丁酯(ATBC)和聚乙二醇400(PEG400)为增塑剂对聚乳酸片材进行改性。拉伸性能测试表明,增塑改性后的聚乳酸片材塑性增强,在ATBC和PEG400质量分数为15%时断裂伸长率分别达到25.6%和38.13%;毛细管流变仪测试表明,其非牛顿指数分别为0.7206和0.9152;通过紫外分光光度法,测得聚PEG400增塑剂增塑改性的聚乳酸片材更易析出,改性的聚乳酸60 d后降解率为14.3%,较纯聚乳酸和ATBC增塑改性片材降解率高。  相似文献   

12.
Polyethylene (PE) extrusion coating was performed on paperboard pre‐coated with water‐borne barrier coatings based on starch–poly(vinyl) (PVOH)–plasticizer blends in order to investigate that how the addition of a plasticizer to the pre‐coating affects the oxygen‐barrier properties of the board after PE extrusion coating. The plasticizers used were glycerol, polyethylene glycol (PEG) and citric acid (CA). Photomicrographs showed that the barrier coating layers were rather smooth, but defects were observed in the starch–PVOH layers when a plasticizer was added. Starch–PVOH layers had oxygen‐barrier properties similar to those of pure PVOH without plasticizers. When a sufficient number of layers (four layers) were applied to cover defects, the starch–PVOH layers containing CA showed oxygen transmission rate (OTR) values similar to those of starch–PVOH layers without plasticizer. The adhesion of PE to pre‐coated paperboard decreased when a plasticizer was added to the pre‐coating recipes. PE extrusion coating resulted in a reduction in the OTR in the case of pre‐coating formulations containing plasticizers. A lower OTR after polyethylene extrusion was observed with PEG as plasticizer than with CA as plasticizer. This could be explained by the increase in brittleness due to cross‐linking under the high temperature load during the extrusion process. Dynamic mechanical analysis of the films showed a substantial increase in storage modulus between 100°C and 200°C for CA‐containing starch–PVOH films. The contact angle of diiodomethane on the pre‐coating layer decreased when a plasticizer was added to the coating recipe indicating an increase in wetting of the PE melt. Addition of PEG to the pre‐coating led to a greater wetting than the addition of CA, and this may have sealed some defects in the pre‐coating leading to lower OTR values.  相似文献   

13.
In the search for antitack additives for Kollicoat EMM 30 D (ethyl acrylate-methyl methacrylate 30% dispersion, Ph. Eur.) film coatings, various possibilities were investigated. The best results were obtained using a combination of simethicone and talc. This mixture was tested on propranolol, theophylline, and verapamil HCl blank pellets in a previously developed Kollicoat EMM 30 D basic formulation. Almost any desired drug release rate can be obtained with all three pellet formulations by varying the two pore formers hypromellose 3mPas and microcrystalline cellulose type 105. A thin application of colloidal silica onto the coated pellets additionally prevents them from sticking together during storage.  相似文献   

14.
Griseofulvin solid dispersions were prepared using polyethylene glycol 6000 (PEG), talc, and their combination as carriers by the solvent method. The dissolution of griseofulvin from these dispersions was studied. It was found that in these carriers the drug dissolution rate was a function of drug loading. The dissolution rate from dispersions prepared using PEG was similar to that from PEG/talc dispersions, especially at a low percentage of drug loading. Dispersions of PEG and PEG/talc provided dissolution rates faster than those from dispersions of talc. The incorporation of talc in PEG yielded dispersions with properties of less tackiness and ease for handling. Dissolution kinetics, based on the Hixson-Crowell equation, was used to determine the characteristics of griseofulvin particles in dispersions. Linear relationships were obtained for PEG and PEG/talc dispersions that indicated the presence of a uniformly sized monoparticulate system, whereas deviation from linearity was observed for talc dispersions. This appeared to be a multiparticulate system in which particles were present as free form and adsorbed form on the surface of talc.  相似文献   

15.
This article aimed to improve the relative solubility and dissolution rate of ferulic acid (FA) by the use of spray-dried solid dispersions (SDs) in order to ensure its in vitro antioxidant potential and to enhance its in vivo anti-platelet effect. These SDs were prepared by spray-drying at 10 and 20% of drug concentration using polyvinylpyrrolidone K30 (PVP-K30), polyethylene glycol 6000 (PEG 6000) and poloxamer-188 (PLX-188) as carriers. SDs and physical mixtures (PM) were characterized by SEM, XRPD, FTIR spectroscopy and TGA analysis. Spray-dried SDs containing FA were successfully obtained. Relative solubility of FA was improved with increasing carrier concentration. PVP-K30 and PEG 6000 formulations showed suitable drug content values close to 100%, whereas PLX-188 presented mean values between 70 and 90%. Agglomerates were observed depending on the carrier used. XRPD patterns and thermograms indicated that spray-drying led to drug amorphization and provided appropriate thermal stability, respectively. FTIR spectra demonstrated no remarkable interaction between carrier and drug for PEG 6000 and PLX-188 SDs. PVP-K30 formulations had changes in FTIR spectra, which denoted intermolecular O–H???O?=?C bonds. Spray-dried SDs played an important role in enhancing dissolution rate of FA when compared to pure drug. The free radical-scavenging assay confirmed that the antioxidant activity of PEG 6000 10% SDs was kept. This formulation also provided a statistically increased in vivo anti-platelet effect compared to pure drug. In summary, these formulations enhanced relative solubility and dissolution rate of FA and chosen formulation demonstrated suitable in vitro antioxidant activity and improved in vivo anti-platelet effect.  相似文献   

16.
目的研究D-果糖和葡萄糖作为增塑剂对玉米淀粉-壳聚糖复合膜性能的影响。方法糊化后的玉米淀粉溶液与壳聚糖溶液混合,分别添加5%,20%,35%,50%,65%(质量分数)的D-果糖及葡萄糖,均质后流延成膜;测定膜的力学性能,并通过扫描电镜、接触角、傅里叶红外扫描和X-衍射对复合膜相关特性进行表征。结果成膜物质之间相容性好,增塑剂用量由5%增加至65%,膜的厚度增加,经D-果糖和葡萄糖增塑的复合膜抗拉强度分别由73.99,70.88 MPa减至18.08,40.53 MPa。经D-果糖增塑的复合膜断裂伸长率呈递增趋势,在添加量为65%时达到19.03%,经葡萄糖增塑的复合膜呈现递减趋势。结论同一含量下,2种复合膜的厚度相近,抗拉强度相差不大,但经D-果糖增塑的复合膜断裂伸长率高,亲水性较好,更适合作为增塑剂应用在复合膜的制备中。  相似文献   

17.
The film-forming properties of chitosan, chitosan glutamate, sodium alginate, and hydroxypropyl methylcellulose (HPMC) were investigated. Films were produced by a casting/solvent evaporation method from plasticizer-free and plasticizer-containing aqueous solutions. The water vapor transmission and mechanical properties (puncture strength and % elongation) of the films were investigated as a function of the polymer type and viscosity, plasticizer type (glycerin, propylene glycol, polyethylene glycol, triethyl citrate), plasticizer concentration, and type and concentration of acid used to dissolve chitosan. The effect of storage humidity was also examined. Glycerin and water were good plasticizers for chitosan glutamate. The chitosan film properties were dependent on the type and concentration of acid used to dissolve it, citric acid being a good plasticizer. The mechanical and water vapor transmission properties of alginate and HPMC films were less influenced by the investigated variables.  相似文献   

18.
Oat starch films were prepared by casting using glycerol, sorbitol, glycerol–sorbitol mixture, urea and sucrose as plasticizers. The effects of these plasticizers on the microstructure, moisture sorption, water vapor permeability (WVP) and mechanical properties were investigated using films stored under a range of relative humidities. The plasticizer type did not affect significantly (p  0.05) the equilibrium moisture content of films, except at 90% relative humidity (RH). Films without plasticizer adsorbed less water and showed higher WVP than plasticized ones, indicating the antiplasticizing effect observed in this work. In general, a decrease in stress at break and Young's modulus and an increase in strain at break were observed when RH increased in all film formulations. Films without plasticizer showed higher stress at break values than the plasticized ones and presented stable strain at break under a range of RH. Sucrose films were the most fragile at low RH while glycerol films were the most hygroscopic.  相似文献   

19.
Abstract

The film-forming properties of chitosan, chitosan glutamate, sodium alginate, and hydroxypropyl methylcellulose (HPMC) were investigated. Films were produced by a casting/solvent evaporation method from plasticizer-free and plasticizer-containing aqueous solutions. The water vapor transmission and mechanical properties (puncture strength and % elongation) of the films were investigated as a function of the polymer type and viscosity, plasticizer type (glycerin, propylene glycol, polyethylene glycol, triethyl citrate), plasticizer concentration, and type and concentration of acid used to dissolve chitosan. The effect of storage humidity was also examined. Glycerin and water were good plasticizers for chitosan glutamate. The chitosan film properties were dependent on the type and concentration of acid used to dissolve it, citric acid being a good plasticizer. The mechanical and water vapor transmission properties of alginate and HPMC films were less influenced by the investigated variables.  相似文献   

20.
Hydroxypropylcellulose (HPC) films containing drugs or hydrophilic or hydrophobic plasticizers were prepared by a hot melt extrusion process. Polyethylene glycol 8000 (PEG 8000) 2%, triethyl citrate (TEC) 2%, acetyltributyl citrate (ATBC) 2%, and polyethylene glycol 400 (PEG 400) 1% were the plasticizing agents studied. In addition, either hydrocortisone (HC) 1% or chlorpheniramine maleate (CPM) 1% was incorporated into the films as a model drug. The physical-mechanical properties of the films that were investigated included tensile strength (TS), percentage elongation (%E), and Young's modulus (YM). Differential scanning calorimetry (DSC) was utilized to determine glass transition temperatures (Tg' s). These parameters were studied as a function of time and temperature. The glass transition temperatures initially decreased with the inclusion of the drugs and plasticizers. However, after 6 months aging, films containing PEG 400 and HC showed a marked increase in Tg. The films containing PEG 400 showed physical-mechanical instability in all parameters studied. All extruded films exhibited a marked decrease in TS in contrast to a large increase in %E when testing was performed perpendicular to flow versus in the direction of flow. In addition, a consistent film of HPC in the absence of drugs or plasticizers could not be extruded due to the excessive stress on the equipment. Although the theoretical percentage of CPM on aging remained fairly constant over the processing temperature ranges in this study, the HC levels remaining in the extruded films during storage were a function of time and temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号