首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 712 毫秒
1.
在雾化激波管中利用反射激波研究了乙醇汽油/空气混合气在高温、低压条件下的自着火特性.测量了混合气在温度为1 100~1 750 K、压力为0.10~0.65 MPa条件下,燃空当量比为0.2~2.5时的着火延迟期、着火壁面压力及OH基自发光强度,分析了当量比、着火温度及压力对混合气自着火特性的影响.结果表明:乙醇汽油/空气混合气的着火延迟期在高温条件下随当量比的增大而延长,不同压力下着火延迟期的对数与着火温度的倒数均呈线性分布,满足Arrhenius关系,并且在低压范围内着火延迟期对压力的依赖性较高;混合气在当量比为1.0、着火温度为1 300~1 430 K时发生剧烈爆燃,此时OH基自发光强瞬间达到峰值后急剧下降,而温度升高后,OH基自发光维持较高强度的时间增长,爆燃压力峰值降低,接近等压燃烧.  相似文献   

2.
陈鑫  谭胜 《热科学与技术》2016,15(6):456-461
为研究当量比和射流压力对激波聚焦起爆性能的影响,以氢气和空气作为工质,在不同当量比和射流压力下对凹面腔中激波聚焦起爆爆震波的过程进行了数值模拟。结果表明,在产生稳定爆震的当量比范围内,激波聚焦的起爆性能随当量比的增大先提高,后降低,在当量比1.1时取得最佳值。射流压力的增大能提高激波聚焦的起爆性能,但提高程度呈下降趋势;它同时有助于扩大产生稳定爆震的当量比范围,计算表明在入口射流压力1.350、0.950、0.550MPa条件下产生稳定爆震的当量比分别为0.4~5.2、0.5~4.7、0.5~3.9。  相似文献   

3.
在10 MW级生物质气化耦合燃煤发电工程项目上,考察了当量比、添加蒸汽、掺混秸秆对稻壳气化特性的影响。在当前的实验条件下,随着当量比在0. 14~0. 20的范围内增加时,CO、H_2和CH_4的体积分数均随之减少,燃气热值和气化效率也随当量比的增大而降低;添加适量蒸汽可以促进CO、H_2和CH_4及燃气热值的提高,气化效率则随蒸汽量的增加而升高;当秸秆掺混比例逐渐增加时,CO、H_2和CH_4的体积分数和燃气热值出现了不同程度的下降,气化效率也不断降低。  相似文献   

4.
利用高速摄像的方法,在狭缝间距为2,mm的圆盘状微型定容燃烧装置中考察了常温常压、当量比φ为1.0~1.6静止丙烷/空气预混气中心点火后向外传播的火焰传播特性.结果表明:微型定容燃烧腔内形成的火焰面有光滑、褶皱和断裂3种形态;光滑火焰面的火焰传播速度低于常规尺度下的火焰传播速度;火焰传播速度随着当量比的增加先增大后减小;在点火能量影响范围外,火焰传播速度随半径增大而减小;随当量比的增加火焰锋面容易出现褶皱和断裂现象.  相似文献   

5.
研究了气口喷射正庚烷、缸内直喷生物柴油的部分均质充量压缩着火(HCCI)燃烧的燃烧特性和排放特性.研究表明,整个燃烧过程旱现三阶段放热模式.随着正庚烷预混合比例的增加,第一阶段和第二阶段最大放热率呈线性增加,从而导致生物柴油着火时的温度和压力明显上升.预混合正庚烷的引入使得放热中心时刻和放热结束时刻明显提前,燃烧持续时间缩短.至于排放方面,预混合比例的增加会引起CO和HC排放的增加,并且增加幅度逐渐减小;在中小当量比下,预混合比例增加会使得NOx排放线性降低,但是对碳烟排放却几乎没有影响;在较大当量比下,预混合比例增加可以使得NOx和碳烟排放同时大幅度下降,并且在20%~25%之间可以得到最佳的NOx和碳烟降低效果.  相似文献   

6.
为了探究氢气微型燃气轮机的燃烧特性,用数值模拟方法分析了6种不同当量比工况下的燃烧室内流场特性、压力损失、燃烧效率、NOx排放和速度分布等参数。结果表明:当量比对回流区的范围影响不大,压力损失和出口速度随当量比增加逐渐增大,出口温度分布系数(OTDF)、排气温度和NOx排放随当量比的增加先增大后减小;径向速度的分布关于燃烧室中心轴线对称;当量比小于1时,燃烧效率在99.9%以上;当量比大于1时,燃烧效率随当量比增加而降低;当量比为1时,排气温度达到2 500 K,NOx排放达到最大值,偏离化学当量比燃烧有利于抑制NOx的生成。  相似文献   

7.
点火位置对天然气直喷超稀燃烧影响的基础性研究   总被引:1,自引:0,他引:1  
利用快速压缩装置进行了点火位置对天然气直喷超稀燃烧的基础性研究,研究结果表明:对于给定的当量比来说,存在一个最佳点火位置,在此位置点火时可以获得最短的燃烧持续期、最大的压力升高值、最高的燃烧效率,最快的燃烧放热率和最低的CO和未燃碳氢排放。最佳点火位置随当量比的减小而移向喷油嘴出口位置。当点火位置靠近喷油嘴出口位置时,稀燃极限可以延伸到更小的当量比,但可着火的当量比的范围变得狭窄。当量比大于0.1时,燃烧效率将维持在较高的数值;当量比小于0.1时,因未燃燃油所占的比例增加,燃烧效率明显降低。  相似文献   

8.
将一台4缸高速轻型柴油机中的一缸改装,使其具有独立的进排气系统和燃油供给系统,研究了参比燃料及其混合物在均质压燃过程中的着火时刻、燃烧速率和NOx、UHC、CO排放.考察了正庚烷、异辛烷和各种不同比例的混合物在常温、常压下各种负荷的燃烧特性.研究发现:随燃料辛烷值增加,第一阶段着火时刻推迟,燃烧持续期缩短,第一阶段反应结束时的压力升高量和温度升高量减少;第一阶段的累积放热量取决于燃料中高十六烷值燃料的浓度;第二阶段的着火时刻与第一阶段着火时刻呈线性关系;第二阶段燃烧持续期随当量比的增加而减小,且随辛烷值增加而延长;随燃料十六烷值和当量比增加,CO和UHC排放大幅度改善.  相似文献   

9.
不同点火提前角时HCNG发动机的燃烧与排放特性   总被引:4,自引:1,他引:3  
在一台火花点火天然气发动机上开展了在不同点火提前角下燃用不同体积掺氢比(O%~50%)的天然气掺氢燃料(HCNG)的试验研究,进行热效率、燃烧放热率、循环变动及排放特性的分析.结果表明:与原天然气发动机相比,HCNG发动机的最大扭矩点火提前角(MB了)减小,MBT时指示热效率变化不大;点火提前角增大时,火焰发展期增长,最大压力变动率减小,快速燃烧期和平均指示压力变动率先减小后增大;在相同点火提前角时,以上4个参数均随掺氢比的增加而减小.N0x、CO排放浓度随掺氢比增加而增大,CH4排放則相反.  相似文献   

10.
空燃比对柴油/丙烷混合燃料发动机燃烧和排放的影响   总被引:3,自引:0,他引:3  
在单缸直喷式柴油机上,研究了燃用柴油和柴油/丙烷混合燃料时,空燃比对发动机燃烧和排放特性的影响。结果表明:发动机转速一定时,燃烧持续期随空燃比和丙烷比例的增加而缩短;缸内最高燃烧压力随空燃比的增大而减小,随丙烷比例的增加而增大;NOx和碳烟排放随空燃比的增大而降低,HC排放在小空燃比时随空燃比的减小而大幅度增加,而在大空燃比时随空燃比的增大而稍有增加;在小空燃比时CO排放随空燃比的减小而增加,在大空燃比时变化不大;燃用柴油/丙烷混合燃料可同时降低CO、HC和碳烟排放,但NOx排放增加。  相似文献   

11.
以二甲醚、甲烷/丙烷混和物、异辛烷/正庚烷混合物作为燃料,模拟研究了燃料成分、压缩比、燃空当量比、进气温度、进气压力对均质充量压燃(HCCI)发动机着火时刻的影响。计算结果表明:随燃料十六烷值的增加,着火延迟期减小;随燃料辛烷值的增加,着火延迟期增加。而压缩比,燃空当量比,进气温度对三种燃料着火时刻有显著影响。进气压力的变化对高十六烷值的燃料着火延迟期影响较小,但对辛烷值高的气体燃料着火延迟期影响比较明显。  相似文献   

12.
In the operation of natural gas engines using diesel pilot ignition (DPI), the ignition delay is longer than that in the operation of a comparable diesel engine. The cause of such effect is more complicated than reducing the concentration of oxidizer. In this research, the chemical kinetics of the ignition process is studied using a homogeneous model containing n-heptane, methane and air. The base fluid is the mixture of methane and air. The equivalence ratio of methane is varied to study the sensitivity of the ratio on the concentration of methane. The dependency on temperature is studied by varying the base fluid temperature. The base fluid is then mixed with the diesel surrogate fuel, n-heptane. The mole fraction of n-heptane, ZC7, covers a wide range to represent the local mixture in different locations of engine combustion chamber. To obtain a complete understanding of the ignition process, different ignition delay times are defined based on temperature increment, n-heptane conversion, and methane conversion. The effects of methane on the ignition reaction paths are analyzed for selected cases. The fundamental causes of the methane's effects are explained based on the reaction path analysis and sensitivity analysis.  相似文献   

13.
A comparative study on ignition delay time and combustion characteristics of four typical oxygenated fuel/air mixtures of dimethyl ether (DME), diethyl ether (DEE), ethanol and E92 ethanol gasoline was conducted through the chemical shock tube. The fuel/air mixtures were measured under the ignition temperature of 1100 to 1800 K, initial pressure of 0.3 MPa and the equivalence ratios of 0.5, 1.0 and 1.5. The experimental results show that the ignition delay time of these four oxygenated fuels satisfies the Arrhenius relation. The reaction H + O2 = OH + O has a high sensitivity in four fuel/air mixtures during high-temperature ignition, which makes the ignition delay lengthen with the increase of the equivalence ratios. By comparing the ignition delay of four fuels, ether fuels have excellent ignition performance and ether functional group has better ignition promotion than hydroxyl group. Moreover, the carbon chain length also significantly promotes the ignition. Due to the accumulation of a large number of active intermediates and free radicals during the long ignition delay time before ignition, the four fuels all have intense deflagration and generate the highest combustion peak pressure at the relatively low ignition temperature (1150-1300 K). For DME, DEE and ethanol, due to the high content of oxygen in their molecules, the combustion peak pressure and luminous intensity increased with the equivalence ratio, and the combustion is intense after ignition. E92 ethanol gasoline with low oxygen content has a lower combustion peak pressure and a longer combustion duration than the other three fuels, and its highest combustion peak pressure appears in the stoichiometric ratio. The combustion process of E92 ethanol gasoline is more oxygen-dependent than the other three fuels.  相似文献   

14.
Using a shock tube facility, measurements on ignition delay times of propane/hydrogen mixtures (hydrogen fraction XH2 is from 0% to 100%) were conducted at equivalence ratios of 0.5, 1.0 and 2.0. Results show that when XH2 is less than 70%, ignition delay time shows a strong Arrhenius temperature dependence, and the ignition delay time increases with the increase of equivalence ratio. When XH2 is larger than 95%, the ignition delay times do not retain an Arrhenius-like temperature dependence, and the effect of equivalence ratio is very weak when the hydrogen fraction is further increased. Numerical studies were made using two selected kinetic mechanisms and the results show that the predicted ignition delay times give a reasonable agreement with the measurements under all test conditions. Both measurements and predictions show that for mixtures with XH2 less than 70%, the ignition delay time is only moderately decreased with the increase of XH2, indicating that hydrogen addition has a weak effect on the ignition enhancement. Sensitivity analysis reveals the key reactions that control the simulation of ignition delay time. Further investigation of the H-atom consumption is made to interpret the ignition delay time dependence on equivalence ratio and XH2.  相似文献   

15.
Ignition delays were measured in a shock tube for syngas mixtures with argon as diluent at equivalence ratios of 0.3, 1.0 and 1.5, pressures of 0.2, 1.0 and 2.0 MPa and temperatures from 870 to 1350 K. Results show that the influences of equivalence ratio on the ignition of syngas mixtures exhibit different tendency at different temperatures and pressures. At low pressure, the ignition delay increases with an increase in equivalence ratio at tested temperature. At high pressures, however, an opposite behavior is presented, that is, increasing equivalence ratio inhibits the ignition at high temperature and vice versa at intermediate temperature. The affecting degree of equivalence ratio on ignition delay is different for each mixture at given condition, especially for the syngas with high CO concentration. Sensitivity analyses demonstrate that reaction H + O2 = O + OH (R1) dominates the syngas oxidation under all conditions. With the increase of CO mole fraction, reactions CO + OH = CO2 + H (R27) and CO + HO2 = CO2 + OH (R29) become more important in the syngas ignition kinetics. With the increase of pressure, the reactions related to HO2 and H2O2 play the dominate role. The opposite influence of equivalence ratio on ignition delay at high- and intermediate-temperatures is chemically interpreted through kinetic analyses.  相似文献   

16.
The shock tube autoignition of 2,5-dimethylfuran (DMF)/n-heptane blends (DMF0-100%, by mole fraction) with equivalence ratios of 0.5, 1.0, and 2.0 over the temperature range of 1200–1800 K and pressures of 2.0 atm and 10.0 atm were investigated. A detailed blend chemical kinetic model resulting from the merging of validated kinetic models for the components of the fuel blends was developed. The experimental observations indicate that the ignition delay times nonlinearly increase with an increase in the DMF addition level. Chemical kinetic analysis including radical pool analysis and flux analysis were conducted to explain the DMF addition effects. The kinetic analysis shows that at lower DMF blending levels, the two fuels have negligible impacts on the consumption pathways of each other. As the DMF addition increases to relatively higher levels, the consumption path of n-heptane is significantly changed due to the competition of small radicals, which primarily leads to the nonlinear increase in the ignition delay times of DMF/n-heptane blends.  相似文献   

17.
Ignition delay times behind reflected shock waves are strongly sensitive to variations in temperature and pressure, yet most current models of reaction kinetics do not properly account for the variations that are often present in shock tube experiments. Particularly at low reaction temperatures with relatively long ignition delay times, substantial increases in pressure and temperature can occur behind the reflected shock even before the main ignition event, and these changes in thermodynamic conditions of the ignition process have proved difficult to interpret and model. To obviate such pressure increases, we applied a new driven-gas loading method that constrains the volume of reactive gases, thereby producing near-constant-pressure test conditions for reflected shock measurements. Using both conventional operation and this new constrained-reaction-volume (CRV) method, we have collected ignition delay times for 1-butanol/O2/N2 mixtures over temperatures between 716 and 1121 K and nominal pressures of 20 and 40 atm for equivalence ratios of 0.5, 1.0, and 2.0. The equivalence ratio dependence of 1-butanol ignition delay time was found to be negative when the oxygen concentration was fixed, but positive when the fuel concentration was held constant. Ignition delay times with strong pre-ignition pressure increases in conventional-filling experiments were found to be significantly shorter than those where these pressure increases were mitigated using the CRV strategy. The near-constant-pressure ignition delay times provide a new database for low-temperature 1-butanol mechanism development independent of non-idealities caused by either shock attenuation or pre-ignition perturbations. Comparisons of these near-constant-pressure measurements with predictions using several reaction mechanisms available in the literature were performed. To our knowledge this work is first of its kind that systematically provides accurate near-constant-enthalpy and -pressure target data for chemical kinetic modeling of undiluted fuel/air mixtures at engine relevant conditions.  相似文献   

18.
Ammonia mixed with methane is a potential clean fuel for engine applications toward a low carbon economy. Studies are scarce on ignition phenomenon for ammonia/methane fuels in literature. In the present study, the ignition characteristics for ammonia–methane–air mixtures have been investigated by both experimental measurements and numerical simulations. Ignition processes of a 60%ammonia/40%methane (mol%) fuel blend were investigated with shock-tube experiments. Measurements of the ignition delay times were performed behind reflected shock waves for such fuel/air mixtures with different equivalence ratios of 0.5, 1, and 2, at pressures around 2 and 5 atm within the temperature range of 1369 to 1804 K. Experimental results were then compared with numerical prediction results employing detailed kinetic mechanism, which showed satisfactory agreement within most of the range of the temperatures, equivalence ratios, and pressures investigated. Within the temperature range of 1300 to 1900 K, pressure range of 1 to 10 atm, equivalence ratio range of 0.5 to 2, and methane proportion range of 0% to 50% in fuel blends, the impacts of temperature, pressure, equivalence ratio, and methane additive were simulated on the ignition delay times of the fuel blends based upon the numerical model. It was found that the improvement of ammonia/methane ignition is significant with the increase of temperature, pressure, and methane additive while it is relatively not sensitive to equivalence ratio within the studied conditions. This suggests a promising potential of such fuel blends in real engine application. In addition to the calculations, reaction sensitivity analyses were also performed to have a deep insight into the observed differences between ammonia/methane/air ignition delay times with variation of conditions.  相似文献   

19.
压缩比、CO2对二甲醚均质压燃影响的数值模拟   总被引:1,自引:0,他引:1  
徐凯  魏远文 《内燃机》2010,(1):12-15
利用化学反应动力学软件建立二甲醚均质压燃燃烧模型,研究了压缩比和进气掺入CO2对二甲醚均质燃烧的影响。结果表明:增大压缩比加快了二甲醚基元反应速率,使着火提前,燃烧压力、温度上升;进气中加入CO2可以延迟着火时刻,降低缸内压力和温度;CO2对二甲醚均质压燃高温燃烧阶段影响更大。  相似文献   

20.
Structure-reactivity trends are investigated by means of high temperature shock tube ignition and quantum chemical calculations for four alkanoic acid methyl esters—methyl formate (MF), methyl acetate (MA), methyl propanoate (MP), and methyl butanoate (MB). Ignition delay times are compared at constant argon/oxygen ratios, equivalence ratios and average pressures. It is observed that MA consistently shows longer ignition delay times than the other three esters, while MF and MB have comparable ignition delay times but different activation energies. MP ignition delay times are also comparable with MB in most cases but are found to be slightly shorter, especially under lean conditions. Simulated ignition delay times using the chemical kinetic model by Westbrook et al. [1] also show that MA has longer ignition delay times than MF, although the agreement between model prediction and experiment for MA is not as good as that for MF at 10 atm. Simulated ignition delay times for MB using two recent MB chemical kinetic models do not predict the same ignition delay times as the small ester mechanism under conditions where MF and MB experimental ignition delay times are found to be comparable. Ab initio quantum mechanical calculations are performed using the composite method CBS QB3, in order to determine bond dissociation energies for the four esters, as well as activation barriers for possible fuel H-abstraction reactions by H atoms. The concerted unimolecular decomposition of the esters to yield methanol and a ketene (or CO in the case of MF) is also studied. The relative reactivity observed in experiments for the four esters can be partially attributed to differences in bond energies and the calculated rates obtained in this study. Further work on possible reaction pathways and subsequent reactions of resulting primary radicals from small methyl esters is motivated by this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号