首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Two algorithms for solving the piecewise linear least–squares approximation problem of plane curves are presented. The first is for the case when the L 2 residual (error) norm in any segment is not to exceed a pre–assigned value. The second algorithm is for the case when the number of segments is given and a (balanced) L 2 residual norm solution is required. The given curve is first digitized and either algorithm is then applied to the discrete points. For each segment, we obtain the upper triangular matrix R in the QR factorization of the (augmented) coefficient matrix of the resulting system of linear equations. The least–squares solutions are calculated in terms of the R (and Q) matrices. The algorithms then work in an iterative manner by updating the least–squares solutions for the segments via up dating the R matrices. The calculation requires as little computational effort as possible. Numerical results and comments are given. This, in a way, is a tutorial paper.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
This paper proposes topology design and kinematic optimization of cyclical 5-degree-of-freedom (DoF) parallel manipulator with proper constrained limb. Firstly, a type of cyclical 5-DoF parallel manipulators with proper constrained limb is proposed by analyzing DoF of the proper constrained limb within workspace. Exampled by a cyclical 5-DoF parallel manipulator with the topology 4-UPS&1-RPS, its motion mapping model is formulated. By taking the reciprocal product of a wrench on a twist as the generalized virtual power, the local and global kinematic performance indices are provided. Then, on the basis of the actuated and constrained singularity analysis of the 4-UPS&1-RPS parallel manipulator within the position and pose workspace, the topology design of the manipulator without singularity is carried out, and its reachable and prescribed workspaces are obtained. Finally, by maximizing the global kinematic performance index and subjecting to a set of appropriate constraint conditions, the kinematic optimal design of the 4-UPS&1-RPS parallel manipulator is carried out utilizing the genetic algorithm of MATLAB optimization toolbox.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号