首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 453 毫秒
1.
活性炭制备工艺条件对其比表面积的影响   总被引:2,自引:1,他引:2  
以煤沥青为原料,KOH为活化剂制备活性炭。应用正交设计研究了制备工艺中炭化温度(A)、炭化时间(B)、活化温度(C)和活化时间(D)四因素对活性炭比表面积的的影响。结果表明:B>D>A>C,并结合KOH活化法的作用机理,分析了原因。  相似文献   

2.
以改质煤沥青为原料,采用KOH活化法制备活性炭。探讨了碱炭比、炭化时间、活化温度、活化时间等对活性炭吸附性能的影响。结果表明,制备改质煤沥青基活性炭的最佳条件为:碱炭比为4,炭化时间为45 min,活化温度840℃,活化时间140 min,在此条件下,制得改质煤沥青基活性炭的碘吸附值为1 152.8 mg/g。  相似文献   

3.
以重质沥青为原料,采用空气热聚合法-物理活化法协同制备重质沥青基活性炭。通过正交设计法系统研究了预氧化升温速率、恒温温度、恒温时间、活化时间、活化温度、炭化时间、炭化温度等因素对重质沥青基活性炭的影响。利用扫描电镜、碘吸附值等对活性炭的表面形态及吸附特性进行表征。结果表明,空气热聚合法-物理活化法协同制备重质沥青基活性炭的优化条件为:预氧化升温速率为2℃/min、预氧化恒温温度为300℃、预氧化恒温时间为1 h、炭化温度为500℃、炭化时间为120 min、活化温度为850℃、活化时间为90 min,该工艺条件下制备的活性炭具有较为发达的微孔结构,碘吸附值为689.33 mg/g。  相似文献   

4.
以煤沥青为原料,通过熔融法加入磁性组分Fe_3O_4制备磁性活性炭。对加入方式、炭化和活化等因素的影响进行了探索。实验结果表明,煤沥青中加入磁性组分Fe_3O_4颗粒,会使表面积有所下降;与负载法相比,熔融法加入磁性组分的磁性活性炭比表面积提高了约900 m~2/g;炭化温度在450℃时活化时间90 min左右为宜;活化温度在800℃时活化时间90~120 min为佳。采用XRD、SEM和EDX对磁性活性炭进行了表征,制备的活性炭呈层状的片状结构,磁性组分Fe_O_4在炭化和活化过程中未发生变化,保持了磁性性能,而且铁元素分布相对比较均匀,没有发生团聚现象。因此,加入方式对活性炭的性能有重要影响,在炭化前通过熔融法加入磁性组分制备的活性炭性能优于炭化后再赋磁性的活性炭。  相似文献   

5.
以酚醛树指为原料,氢氧化钾为活化剂,制备酚醛树脂基超高比表面积活性炭。采用正交实验考查了制备工艺中炭化温度,碱炭比,活化温度和活化时间对活性炭吸附性能的影响,确定了超高比表面积活性炭的制备最佳工艺。利用TG—DTA对热解过程中树脂的炭化活化行为进行了探讨;通过N2-BET对活性炭比表面积和孔结构进行了表征,并简单分析了成孔机理。结果表明:炭化温度400℃,碱炭比为5:1,活化温度为750℃,活化时间为100min时,制备的酚醛树脂基活性炭比表面积为3013m^2·g^-1,孔容1.609ml/g,平均孔径2.135nm,亚甲基蓝吸附值为592mg·g^-1。  相似文献   

6.
超级球形活性炭制备的研究   总被引:1,自引:0,他引:1  
代伟  白金锋  周亚平 《炭素》2006,(1):36-42
以煤沥青为主要原料采用悬浮法制备含致孔剂的煤沥青球后进行预氧化、炭化和活化,最终得到沥青基球形活性炭(PSAC)。借助扫描电子显微镜(SEM)和BET测试,所制得的PSAC球形度好、孔径分布范围窄,是一种高性能的炭质吸附材料。探讨了煤沥青球的预氧化、炭化和活化等工艺条件对PSAC的碘、苯和亚甲基蓝吸附值影响规律。结果表明:当分散荆、水溶液和沥青的吡啶溶液体积比为0.1:0.8:1时,适宜的成球温度为90℃、搅拌速度为200rpm及搅拌时间为20min,由此可制备出平均球形度大于0.9和平均粒径为25μm的煤沥青球;将所制备的煤沥青球经过预氧化温度280℃、预氧化时间6小时和炭化温度700℃、炭化时间40min及升温速率5℃/min,KOH与煤沥青的质量比为3:1的条件下,制备出煤沥青基球形活性炭的比表面积为3365m^2/g,碘、苯和亚甲基蓝吸附值分别达到2256mg/g、1068mg/g和390mg/g,微孔径主要集中分布在2~3nm左右的球形活性炭。  相似文献   

7.
《化工科技》2021,29(4)
以陕北中低温沥青为原料,通过化学与物理活化耦合的方法制备活性炭材料,用于罗丹明B吸附。通过扫描电子显微镜(SEM)、X-射线粉末衍射仪(XRD)等对活性炭材料的组成及结构进行分析。采用正交分析法,分别考察了活化温度、活化时间、活化剂用量等因素对罗丹明B吸附性的影响。结果表明,活性炭材料的最优制备条件为m(煤沥青)∶m(氯化锌)=1∶4,氯化锌活化温度600℃、活化时间60 min,二氧化碳活化温度1 000℃、活化时间150 min。  相似文献   

8.
以武钢焦化公司焦油渣为原料,KOH为活化剂,采用正交实验研究了活化温度、活化时间、碱炭比(氢氧化钾与焦化除尘灰的质量比)和炭化温度对所制活性炭吸附性能的影响,得出制备焦油渣基活性炭影响因素主次顺序为活化温度、活化时间、碱炭比、炭化温度,最佳活化条件为活化温度为800℃,活化时间为100min,碱炭比为4:1,炭化温度为400℃。在此条件下制备活性炭的碘吸附值为1300.765mg/g。  相似文献   

9.
铜草是一种用于修复铜污染土壤的重金属耐性/富集植物,目前尚未得到有效利用。研究提出了一种以铜草为起始原料,经CO2活化制备载铜活性炭的新思路。在考察活化温度和活化时间对活性炭性能的影响基础上,得到了制备活性炭较佳工艺条件:炭化温度为500℃、炭化时间为2 h、活化温度为600℃、活化时间为3 h,所得铜草基载铜活性炭的BET比表面积达433.0 m~2×g~(-1),铜颗粒分散较均匀,对生物质基C═C/C═O键的催化转移氢化具有较好的催化活性。  相似文献   

10.
以熔融纺丝制备的Kraft硬木木质素纤维(HKL)为原料,经炭化得到木质素基炭纤维(HKL-CF),再采用水蒸气活化法制备了活性炭纤维(HKL-ACF),通过红外光谱仪和扫描电镜研究了水蒸气活化对活性炭纤维化学结构和表面形貌的影响,采用全自动物理吸附仪、X射线衍射仪和拉曼光谱仪等研究了活化时间、活化温度和活化水蒸气流量对所制备活性炭纤维的比表面积、孔结构和微晶结构的影响规律。研究表明,水蒸气活化处理提高了活性炭纤维中的C—O和C=C结构含量;随着活化时间的延长,活性炭纤维的比表面积增大,且随活化温度和水蒸气流量的提高呈现出先增大后减小的趋势;晶粒尺寸随着活化时间和温度的提高,逐渐变小,纤维表面的石墨化程度随活化时间的增加,逐渐变大;活化温度800 ℃,活化时间4 h,水蒸气流量1 mL/min下制备的活性炭纤维的BET比表面积最高可达2 081.34 m2/g,总孔容最大为1.60 cm3/g。  相似文献   

11.
聚丙烯腈(PAN)中空纤维在空气中250℃预氧化2 h后,在氮气气氛中炭化,得到PAN基中空炭纤维(PAN-CHF),再在二氧化碳气氛中活化,得到PAN基活性中空炭纤维(PAN-ACHF)。考察了炭化温度和炭化时间对PAN-CHF的收缩率、PAN-ACHF的收缩率、活化收率、比表面积和吸附性能的影响。结果表明:炭化温度为1 000℃时,PAN-CHF和PAN-ACHF的收缩率相同;炭化温度为900℃时,PAN-ACHF的比表面积最大,吸附性能最好,炭化时间对PAN-CHF和PAN-ACHF的收缩率影响不大,但活化收率随炭化时间延长呈上升趋势,比表面积先增后降,炭化时间为60 min时达到最大,其吸附量最大。  相似文献   

12.
赵延军  胡以强  刘卫民 《广东化工》2010,37(12):208-209,211
以酚醛树脂为原料,泡沫陶瓷为载体,经过浸渍、固化、炭化后,采用一种复合的活化方法-KOH浸渍加水蒸气括化的复合活化法,制备表薤积较大的酚醛树脂基活性炭。并采用正交试验法考察制备工艺中了活化温度、滔化时间下对所制得得酚醛基活性炭烧失率、碘吸附值、比表面积及其孔结构的影响。结果表明,在活化温度850℃,活化时间80min条件下,可制得比表面积1197m^2/g,中空容0.369cm^3/g,孔径2.57nm的酚醛树脂基活性炭。  相似文献   

13.
以油茶壳为原料,经炭化、KOH活化,制备微孔活性炭。考查了活化温度、活化时间和碱炭比对微孔活性炭碘吸附值和产率的影响,并采用正交试验优化了制备条件。研究结果表明:活化温度800℃、活化时间180 min、碱炭质量比3.5:1时,活性炭的碘吸附值达3 221 mg/g,产率51.2%。采用比表面积孔隙分析仪测定了氮气吸附/脱附等温线,计算得BET比表面积为1 755.72 m2/g,平均孔径为2.15 nm,总孔容为0.328 cm3/g,微孔孔容占总孔容的55.8%;SEM分析可见活性炭表面具有大量孔隙结构;FT-IR分析表明活化促进了—CH3、—OH热解,活性炭中仍保存含氧官能团。  相似文献   

14.
This research demonstrates the production of activated carbon from scrap tires via physical activation with carbon dioxide. A newly constructed apparatus was utilized for uninterrupted carbonization and activation processes. Taguchi experimental design (L16) was applied to conduct the experiments at different levels by altering six operating parameters. Carbonization temperature (550–700 °C), activation temperature (800–950 °C), process duration (30–120 min), CO2 flow rate (400 and 600 cc/min) and heating rate (5 and 10 °C/min) were the variables examined in this study. The effect of parameters on the specific surface area (SSA) of activated carbon was studied, and the influential parameters were identified employing analysis of variance (ANOVA). The optimum conditions for maximum SSA were: carbonization temperature=650 °C, carbonization time=60 min, heating rate=5 °C/min, activation temperature= 900 °C, activation time=60 min and CO2 flow rate=400 cc/min. The most effective parameter was activation temperature with an estimated impact of 49%. The activated carbon produced under optimum conditions was characterized by pore and surface structure analysis, iodine adsorption test, ash content, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The process yield for optimized activated carbon was 13.2% with the following properties: specific surface area=437 m2/g, total pore volume=0.353 cc/g, iodine number=404.7 mg/g and ash content=13.9% along with an amorphous structure and a lot of oxygen functional groups. These properties are comparable to those of commercial activated carbons.  相似文献   

15.
以水稻秸秆为原料、氢氧化钠为活化剂制备活性炭。结果表明水稻秸杆活性炭的最佳工艺条件:碱碳比为2∶1,活化时间为60 min,活化温度为600℃,碳化温度为350℃,在此工艺条件下制备的水稻秸秆活性炭的亚甲基蓝吸附值和碘吸附值分别为29.2 mL/0.1 g和1 706.98 mg/g,制备出的活性炭吸附剂质量指标接近水质净化用活性炭标准。  相似文献   

16.
以沙漠治理树种长柄扁桃的种壳为原料,采用水蒸气活化法制得了介孔发达的活性炭,并研究了炭化温度、活化温度、活化时间、水蒸气用量对活性炭吸附性能及产率的影响。结果表明:在炭化温度600℃、活化温度850℃、活化时间60 min、水蒸气与炭化料的质量比为6:1的最佳工艺条件下,制得活性炭样品的产率为12%,碘吸附值和亚甲基蓝吸附值分别达到1 175和315 mg/g,介孔率为60.9%,比表面积为1 127 m2/g,平均孔径2.6 nm,在吸附平衡时间为24 h时,活性炭对水溶液中头孢氨苄的吸附量高达245 mg/g,优于相同条件下制得的椰壳和核桃壳活性炭的吸附能力。  相似文献   

17.
用质量分数为4%的磷酸氢氨溶液预处理聚丙烯腈(PAN)中空纤维,经预氧化及炭化后,用二氧化碳气体在不同温度下活化40 min,得到PAN基活性中空炭纤维(PAN-ACHF)。考察了活化温度对PAN-ACHF的比表面积、孔径分布、形态和吸附性能的影响。结果表明,随着活化温度的升高,PAN-ACHF表面的孔逐渐加深,且数目逐渐增多,比表面积逐渐增大;当活化温度为900℃时,BET比表面积最大为1 422 m2/g,中孔的比表面积也达到最大,为1 234 m2/g,且孔径主要集中在2~5 nm;PAN-ACHF对肌酐和VB12的吸附率都随着活化温度的升高而增大,当活化温度为900℃时,PAN-ACHF对肌酐和VB12的吸附率都达到最大值.分别为99%和84%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号