首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article is an attempt to develop an analytical framework to address sensitivity of irrigation offtakes. The perturbation of water depth and the deviation of the setting are considered for analysis. Sensitivity of delivery takes into account the impacts of the perturbations on the delivery (to the command area of the offtake). Sensitivity of conveyance assesses the effects on the conveyance discharge of the parent canal. Analytical formulations of six sensitivity indicators are provided. The concept of head loss equivalent is introduced to explicitly take into account the hydraulic behavior in the dependent canal downstream of the offtakes. Hydraulic perturbations are considered either as upstream deviations in the parent canal or downstream perturbations in the dependent canal.  相似文献   

2.
The flow behavior along an open-channel irrigation network can be assessed by determining the sensitivity of the irrigation structures. The importance of governing factors of the sensitivity and proportionality indicators is analyzed using a theoretical approach as well as practical results from historical data on a gated system in Sri Lanka and a gated and structured system in Pakistan. The influence of the discharge on the sensitivity indicator varies with the type of flow (overshot-undershot). For a common offtake (e.g., an orifice followed by a crest), sensitivity is at its peak at maximum discharge. The available head through the structure appears to be the most influential factor for sensitivity; the greater the head, the lower the sensitivity is. The submergence of the flow downstream of the structure is a reducing factor of the sensitivity that is important to consider for sensitive structures. Different methods for assessing the governing factors of sensitivity are discussed and illustrated using case studies. It is recommended that the sensitivity indicator be determined for the full supply depth in the parent canal and the maximum discharge through the offtake.  相似文献   

3.
An accuracy-based learning classifier system (XCS), as described in a companion paper (Part I: Design), was developed and evaluated to produce operational rules for canal gate structures. The XCS was applied together with a genetic algorithm and an unsteady hydraulic simulation model, which was used to predict responses to gate operation rules. In the tested cases, from 100 to 2,000 XCS simulations, each involving thousands of hydraulic simulations, were required to produce satisfactory rules. However, the overall fitness of the set of rules increased monotonically as XCS simulations progressed. Initial fitness started at an arbitrary value, and rules increased in strength by better achieving operational objectives during the training process. Fewer XCS iterations were required to increase the fitness as the rule population evolved. Calculated water depths approached the respective target depths for variable water delivery demand through turnout structures in the simulated canal systems. The water depth achieved stabilization inside a dead band of? ±?8% of the target depth after applying different turnout demand hydrographs to each reach. The calculated depth was inside the dead band 92% of the time in Reach 1, and 73% of the time in Reach 2 for the constant supply experiment. The water depth was inside the dead band 100% of the time in Reach 1, and 76% of the time in Reach 2 for the variable-supply experiment.  相似文献   

4.
Analytical relationships between the control of canal water depth, the sensitivity of irrigation delivery structures, and the resulting internal performance are established at the system level. One system sensitivity indicator is derived for both adequacy and efficiency, and two for equity (coefficient of variation and Theil information index). The level of precision which reflects the effectiveness in controlling water depth is defined as a permissible variation of water depth at the cross-regulator (±ΔHR) about the target. The degree of influence exercised by the cross-regulator on offtakes is accounted for through an influence factor between zero and one. The behavior of three different irrigation systems in Sri Lanka and Pakistan is studied with both analytical system indicators and numerical hydraulic simulations. It shows good agreement for a range of precision between 0.02 and 0.2 m. These global system indicators can be used to define the precision level required to achieve a given performance, to estimate actual performance from recorded precision at regulators, and to diminish the system sensitivity, improving the performance for a given precision. Practical operating policies can be inferred from sensitivity information of irrigation systems without the necessity of a complex irrigation operation model.  相似文献   

5.
In many medium-sized irrigation systems water is wasted during the night because demand is low and supply is not reduced accordingly. A hydrodynamic model was applied, using MIKE 11 as a software tool, to simulate abrupt discharge changes and their travel times along small irrigation canals. Filling and emptying of the canal were also analyzed. The model was calibrated with data of a field experiment that included startup, positive, and negative surges. A technique was developed to take into account the considerable water losses in the canal. Performance indicators efficiency, adequacy, equity, and dependability, proposed by Molden and Gates in 1990, were redefined using the concept of usefully delivered discharge. The newly defined indicators were consequently used to find the gate operation scenario that meets optimally the target day and night discharges. It was found that it is feasible to implement night delivery reduction. The calibrated model was used to develop guidelines for the operation of the canal with daily flow variation, resulting in considerable water savings during the night.  相似文献   

6.
Design of a minimum cost canal section involves minimization of the sum of costs per unit length of the canal, subject to uniform flow condition in the canal. Essentially it is a problem of minimization of a nonlinear objective function subject to a nonlinear equality constraint. In this investigation, the objective function has been expressed as the cost per unit length of the canal for lining, the depth-dependent unit volume earthwork cost, and the cost of water lost as seepage and evaporation losses. A general resistance equation has been used as an equality constraint. Using a nonlinear optimization technique on an augmented function, generalized empirical equations and section shape coefficients have been obtained for the design of minimum cost irrigation canals of triangular, rectangular, and trapezoidal shapes. The optimal dimensions for any shape can be obtained from the proposed equations along with tabulated section shape coefficients. The equation for optimal cost along with the corresponding section shape coefficients is useful during the planning of a canal project. A design example with sensitivity analysis has been included to demonstrate the simplicity of the present method.  相似文献   

7.
In this paper, the approach proposed by Mu and Jiang (2008) to obtain the optimal perturbations for triggering blocking (BL) onset is generalized to seek the optimal perturbations triggering onset of the strong zonal flow (SZF) regime. The BL and SZF regimes are characterized by the same dipole-like anomaly pattern superposed on the climatological flow, but with opposite sign. The results show that this method is also superior at finding the initial optimal perturbations triggering onset of the SZF regime, especially in the medium range.Furthermore, by comparing the two kinds of conditional nonlinear optimal perturbations (CNOPs) triggering onset of BL and SZF regimes, we find that in the linear approximation, there is symmetry in the sensitivities for BL and SZF onset, and the perturbations that optimally trigger onset of BL and SZF regimes at times when linear approximation is valid are also characterized by the same spatial pattern but with opposite sign. Whereas when the optimization time is extended to 6 days, the two kinds of CNOPs lose their out-of-phase behavior. The nonlinearity results in an asymmetry between the sensitivity for BL and SZF onset. Additionally, we find that the optimal perturbations have one common property, which is that the second baroclinic mode contributes more to the initial perturbations while the barotropic mode dominates the final structures.  相似文献   

8.
Studied auditory sensitivity and changes of selected structures of the external, middle, and inner ear in 31 Mongolian gerbil neonates. Data demonstrate an improvement in sensitivity to sound associated with postnatal changes in the morphology of the ear. Cochlear potentials and a concomitant reflex response to sound were observed 14 days after birth. At this state of postnatal development the organ of Corti appeared mature, the external auditory canal was open, but mesenchyme was present within the tympanic bulla. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

9.
In order to study changes in synaptic structure that accompany learning and memory, we have developed optical methods to visualize dendritic spines and presynaptic terminals in living, electrically monitored brain slices maintained in vitro. Focal microapplication of the fluorescent lipophilic dye DiI provides Golgi-like staining of small numbers of cells and processes that can be resolved clearly using confocal microscopy; viability of stained cells is established by exclusion of the fluorescent DNA-binding dye ethidium bromide. Serial optical sections are enhanced by deconvolution and other image processing methods. The resulting high-resolution images are combined in an automated procedure to generate three-dimensional reconstructions, in which submicron synaptic structures can be viewed and measured. These unbiased methods allow volume changes in individual, living synaptic structures to be assessed quantitatively over periods of hours or days in development or in response to stimulation, drug application, or other perturbations.  相似文献   

10.
A neural network model based on the anatomy and physiology of the cerebellum is presented that can generate both simple and complex predictive pursuit, while also responding in a feedback mode to visual perturbations from an ongoing trajectory. The model allows the prediction of complex movements by adding two features that are not present in other pursuit models: an array of inputs distributed over a range of physiologically justified delays, and a novel, biologically plausible learning rule that generated changes in synaptic strengths in response to retinal slip errors that arrive after long delays. To directly test the model, its output was compared with the behavior of monkeys tracking the same trajectories. There was a close correspondence between model and monkey performance. Complex target trajectories were created by summing two or three sinusoidal components of different frequencies along horizontal and/or vertical axes. Both the model and the monkeys were able to track these complex sum-of-sines trajectories with small phase delays that averaged 8 and 20 ms in magnitude, respectively. Both the model and the monkeys showed a consistent relationship between the high- and low-frequency components of pursuit: high-frequency components were tracked with small phase lags, whereas low-frequency components were tracked with phase leads. The model was also trained to track targets moving along a circular trajectory with infrequent right-angle perturbations that moved the target along a circle meridian. Before the perturbation, the model tracked the target with very small phase differences that averaged 5 ms. After the perturbation, the model overshot the target while continuing along the expected nonperturbed circular trajectory for 80 ms, before it moved toward the new perturbed trajectory. Monkeys showed similar behaviors with an average phase difference of 3 ms during circular pursuit, followed by a perturbation response after 90 ms. In both cases, the delays required to process visual information were much longer than delays associated with nonperturbed circular and sum-of-sines pursuit. This suggests that both the model and the eye make short-term predictions about future events to compensate for visual feedback delays in receiving information about the direction of a target moving along a changing trajectory. In addition, both the eye and the model can adjust to abrupt changes in target direction on the basis of visual feedback, but do so after significant processing delays.  相似文献   

11.
Basilar membrane (BM) noise, measured as a velocity signal under the quiet acoustic condition, was investigated in the guinea pig. The cochleas of anesthetized young healthy guinea pigs were surgically exposed and a hole was made on the lateral wall of the scala tympani of the first cochlear turn for visualization of the BM and measurement of the BM velocity with a laser interferometer. The amplitude and frequency of the BM velocity noise were analyzed by a spectrum analyzer under different conditions. The spectrum of the BM velocity noise was a band limited function with a peak velocity at the topographic best frequency of the measured location on the BM. The peak velocity ranged to about 8 microm/s and depended on the physiological condition of the cochlea. Saline blockage of the external auditory canal or the middle ear did not change the BM noise. BM noise was much smaller, or was not evident, when the cochlear sensitivity decreased. The suppression tuning curve of the BM velocity noise indicates that the maximum suppression caused by an acoustic pure tone occurred at the best frequency location. A low sound level wide band acoustic noise given to the external ear canal produced a spectrum function having the same frequency and amplitude response as the BM noise. Electrical stimulation of the crossed olivocochlear bundle significantly depresses the BM velocity noise. These data demonstrate that the BM noise is a representation of internal rather than external noise. The amplitude and frequency of the BM noise reflect the usual cochlear sensitivity and frequency selectivity. Since the organ of Corti in the sensitive cochlea is a highly sensitive and tuned mechanical system, the internal (to the animal) noise responsible for the BM noise may originate from mechanical vibrations remote from the cochlea and propagated to the ear, or may be caused by Brownian motion of cellular structures in the cochlea.  相似文献   

12.
In a companion paper, a class of downstream-water-level feedback canal controllers was described. Within this class, a particular controller is chosen by selecting which controller coefficients to optimize (tune), the remaining coefficients being set to zero. These controllers range from a series of simple proportional-integral (PI) controllers to a single centralized controller that considers lag times. In this paper, several controllers within this class were tuned with the same quadratic performance criteria (i.e., identical penalty functions for optimization). The resulting controllers were then tested through unsteady-flow simulation with the ASCE canal automation test cases for canal 1. Differences between canal and gate properties, as simulated and as assumed for tuning, reduced controller performance in terms of both water-level errors and gate movements. The test case restrictions placed on minimum gate movement caused water levels to oscillate around their set points. This resulted in steady-state errors and much more gate movement (hunting). More centralized controllers handle unscheduled flow changes better than a series of local PI controllers. Controllers that explicitly account for pool wave travel times did not improve control as much as expected. Sending control actions within a given pool to upstream pools improved performance, but caused oscillations in some cases, unless control signals were also sent downstream. A good compromise between controller performance and complexity is provided by controllers that pass feedback from a given water level to the check structure at the upstream end of its pool (i.e., that used for downstream control of an individual pool) and to all upstream and one downstream check structures.  相似文献   

13.
The accuracy of tympanometric estimates of ear canal volume was evaluated by testing the following two assumptions on which the procedure is based: (a) ear canal volume does not change when ear canal pressure is varied, and (b) an ear canal pressure of 200 daPa drives the impedance of the middle ear transmission system to infinity so the immittance measured at 200 daPa can be attributed to the ear canal volume alone. The first assumption was tested by measuring the changes in ear canal volume in eight normal subjects for ear canal pressures between +/- 400 daPa using a manometric procedure based on Boyle's gas law. The data did not support the first assumption. Ear canal volume changed by a mean of .113 ml over the +/- 400 daPa pressure range with slightly larger volume changes occurring for negative ear canal pressures than for positive ear canal pressures. Most of the volume change was attributed to movement of the probe and to movement of the cartilaginous walls of the ear canal. The second assumption was tested by comparing estimates of ear canal volume from susceptance tympanograms with a direct measurement of ear canal volume adjusted for changes in volume due to changes in ear canal pressure between +/- 400 daPa. These data failed to support the second assumption. All tympanometric estimates of ear canal volume were larger than the measured volumes. The largest error (39%) occurred for an ear canal pressure of 200 daPa at 220 Hz, whereas the smallest error (10%) occurred for an ear canal pressure of -400 daPa at 660 Hz. This latter susceptance value (-400 daPa at 660 Hz) divided by three is suggested to correct the 220-Hz tympanogram to the plane of the tympanic membrane. Finally, the effects of errors in estimating ear canal volume on static immittance and on tympanometry are discussed.  相似文献   

14.
1. Rostral dorsal accessory olive (rDAO) neurons are sensitive to light touch but have little or no discharge during active movement. We hypothesize that sensitivity of the rDAO is reduced during movement. To test this hypothesis, we evaluated sensitivity of rDAO neurons as cats reached out and retrieved a handle. On selected trials, mechanical or electrical perturbations to the forelimb were presented, and responses of rDAO neurons to the disturbances were recorded. 2. All rDAO units were highly sensitive to somatosensory stimuli during periods of stance. The cells responded to stimuli such as touch to hairs or light taps to the platform on which the cat was standing. 3. Discharges of rDAO neurons showed little or no synchronization to any aspect of the reaching task. rDAO neurons failed to fire to mechanical perturbations of the food handle during retrieval or hold phases of the task, even when their receptive fields included the surface of the paw in contact with the handle. 4. Electrical stimulation of the skin produced the greatest evoked response at all rDAO recording sites when the cats were at stance. Stimulation at any time during the reaching task, including periods of holding and licking, produced lower-amplitude evoked responses. The reduction in evoked response could be large and was restricted to the limb performing the task. 5. The data support the hypothesis that the cutaneous sensitivity of the rDAO is reduced during behavior. However, the inhibition does not appear to be tailored to specific times during the task or to neurons with specific receptive field locations on the actively moving limb. The reduction in sensitivity is as likely to be dependent on limb posture as on movement. We conclude that the rDAO discharge provides the cerebellum with information about vibration or contact during stance; it does not provide reliable information about undisturbed or disturbed movement. Climbing fiber input from rDAO might be useful in the preparation to make a movement, but it is probably not useful for correction of movement errors.  相似文献   

15.
The action of phospholipase A2 (PLA2) on bilayer substrates causes the accumulation of reaction products, lyso-phospholipid and fatty acid. These reaction products and the phospholipid substrate generate compositional heterogeneities and then apparently phase separate when a critical mole fraction of reaction product accumulates in the membrane. This putative phase separation drives an abrupt morphologic rearrangement of the vesicle, which may be in turn responsible for modulating the activity of PLA2. Here we examine the thermotropic properties of the phase-separated lipid system formed upon hydrating colyophilized reaction products (1:1 palmitic acid:1-palmitoyl-2-lyso-phosphatidylcholine) and substrate, dipalmitoylphosphatidylcholine. The mixture forms structures which are not canonical spherical vesicles and appear to be disks in the gel-state. The main gel-liquid transition of these structures is hysteretic. This hysteresis is apparent using several techniques, each selected for its sensitivity to different aspects of a lipid aggregate's structure. The thermotropic hysteresis reflects the coupling between phase separation and changes in vesicle morphology.  相似文献   

16.
The fastigial nucleus (FN) receives vestibular information predominantly from Purkinje cells of the vermis. FN in the monkey can be divided in a rostral part, related to spinal mechanisms, and a caudal part with oculomotor functions. To understand the role of FN during movements in space, single-unit activity in alert monkeys was recorded during passive three-dimensional head movements from rostral FN. Seated monkeys were rotated sinusoidally around a horizontal earth-fixed axis (vertical stimulation) at different orientations 15 degrees apart (including roll, pitch, vertical canal plane and intermediate planes). In addition, sinusoidal rotations around an earth-vertical axis (yaw stimulus) included different roll and pitch positions (+/-10 degrees, +/-20 degrees). The latter positions were also used for static stimulation. One hundred fifty-eight neurons in two monkeys were modulated during the sinusoidal vertical search stimulation. The vast majority showed a uniform response pattern: a maximum at a specific head orientation (response vector orientation) and a null response 90 degrees apart. Detailed analysis was obtained from 111 neurons. On the basis of their phase relation during dynamic stimulation and their response to static tilt, these neurons were classified as vertical semicircular canal related (n = 79, 71.2%) or otolith related (n = 25; 22.5%). Only seven neurons did not follow the usual response pattern and were classified as complex neurons. For the vertical canal-related neurons (n = 79) all eight major response vector orientations (ipsilateral or contralateral anterior canal, posterior canal, roll, and nose-down and nose-up pitch) were found in Fn on one side. Neurons with ipsilateral orientations were more numerous and on average more sensitive than those with contralateral orientations. Twenty-eight percent of the vertical canal-related neurons also responded to horizontal canal stimulation. None of the vertical canal-related neurons responded to static tilt. Otolith-related neurons (n = 25) had a phase relation close to head position and were considerably less numerous than canal-related neurons. Except for pitch, all other response vector orientations were found. Seventy percent of these neurons responding during dynamic stimulation also responded during static tilt. The sensitivity during dynamic stimulation was always higher than during static stimulation. Sixty-one percent of the otolith-related neurons responded also to horizontal canal stimulation. These results show that in FN, robust vestibular signals are abundant. Canal-related responses are much more common than otolith-related responses. Although for many canal neurons the responses can be related to single canal planes, convergence between vertical canals but also with horizontal canals is common.  相似文献   

17.
A method for modeling flow regime changes at gate structures in canal reaches is presented. The methodology consists of using an approximate Riemann solver at the internal computational nodes, along with the simultaneous solution of the characteristic equations with a gate structure equation at the upstream and downstream boundaries of each reach. The conservative form of the unsteady shallow-water equations is solved in the one-dimensional form using an explicit second-order weighted-average—flux upwind total variation diminishing (TVD) method and a Preissmann implicit scheme method. Four types of TVD limiters are integrated into the explicit solution of the governing hydraulic equations, and the results of the different schemes were compared. Twelve possible cases of flow regime change in a two-reach canal with a gate downstream of the first reach and a weir downstream of the second reach, were considered. While the implicit method gave smoother results, the high-resolution scheme—characteristic method coupling approach at the gate structure was found to be robust in terms of minimizing oscillations generated during changing flow regimes. The complete method developed in this study was able to successfully resolve numerical instabilities due to intersecting shock waves.  相似文献   

18.
The vertical force applied to an endodontic spreader generates stress along the canal walls. Recognizing the potential for this stress may reduce the incidence of vertical root fractures. A photoelastic acrylic model was fabricated to exhibit the stress produced during obturation of curved canals using the lateral condensation technique. Twenty standardized models simulating curved canals (32 degrees) were formed within PL-2 photoelastic acrylic resin blocks. The canals were fitted with a gutta-percha point, and either a stainless-steel or nickel-titanium finger spreader was inserted. An Instron 4502 universal testing machine applied a vertical force of 20 Newtons to the spreader. Quarter wave and polarizing filters were used with backlighting to generate the fringe patterns in the models. Photographs of the resulting stress lines showed that the stainless-steel spreaders created three areas of concentrated stress. The nickel-titanium spreaders induced stress patterns spread out along the surface of the canals, thus reducing the concentration of stress and the potential for vertical root fracture.  相似文献   

19.
The differential use of CC chemokine receptor 5 (CCR5) and CXC chemokine receptor 4 (CXCR4) may be intimately involved in the transmission and progression of human immunodeficiency virus infection. Changes in coreceptor utilization have also been noted upon adaptation of primary isolates (PI) to growth in established T-cell lines. All of the T-cell line-adapted (TCLA) viruses studied to date utilize CXCR4 but not CCR5. This observation had been suggested as an explanation for the sensitivity of TCLA, but not PI, viruses to neutralization by recombinant gp120 antisera and V3-directed monoclonal antibodies, but recent studies have shown coreceptor utilization to be independent of neutralization sensitivity. Here we describe a newly isolated TCLA virus that is sensitive to neutralization but continues to utilize both CXCR4 and CCR5 for infection. This finding further divorces coreceptor specificity from neutralization sensitivity and from certain changes in cell tropism. That the TCLA virus can continue to utilize CCR5 despite the changes that occur upon adaptation and in the apparent absence of CCR5 expression in the FDA/H9 T-cell line suggests that the interaction between envelope protein and coreceptor may be mediated by multiple weak interactions along a diffuse surface.  相似文献   

20.
Design and operational issues with respect to the use of inflatable-deployable foam-rigidized components in aerospace structures are investigated in this paper. The sample structures used in this study are fabricated from flexible Kapton film formed into a cylindrical shell by bonding a flat sheet along a longitudinal seam. This tubular shell is injected with a hardening urethane foam to form a composite strut coupon. As with all structures touted for aerospace use, the survivability of foam-rigidized structures when subjected to a micrometeor flux is of interest. This issue is investigated in this paper by performing two controlled experiments: (1) Foam-rigidized test coupons were evaluated in their pristine state to determine structural properties, severely damaged in a controlled fashion, and then evaluated again to compare the undamaged to damaged behavior; and (2) a single specimen was repeatedly tested and then slightly damaged to examine how structural behavior evolves as damage accumulates. The results of these experiments are then used to draw conclusions about the utility of foam-rigidized structures in space applications, including an evaluation of appropriate structural health monitoring strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号