首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The oxidation of supported cobalt based slurry bed Fischer–Tropsch catalysts by means of water was studied. Water is one of the Fischer–Tropsch reaction products and can probably cause oxidation and deactivation of a reduced cobalt catalyst. Model experiments using Mössbauer emission spectroscopy and thermogravimetry as well as realistic Fischer–Tropsch synthesis runs were performed. It was demonstrated that Mössbauer emission spectroscopy can successfully be applied to the investigation of high cobalt loading Fischer–Tropsch catalysts. Strong indications were found that oxidation of reduced cobalt catalysts occurs under realistic Fischer–Tropsch conditions. Mössbauer emission spectroscopy and thermogravimetry results showed that the oxidation depends on the PH2/PH2O ratio, and that oxidation proceeds to less than complete extents under certain conditions. The formation of both reducible and less reducible cobalt oxide species was observed, and the relative ratio between these species depends on the severity of the oxidation conditions.  相似文献   

2.
A series of CoOx/Al2O3 catalysts was prepared, characterized, and applied for the selective catalytic reduction (SCR) of NO by C3H8. The results of XRD, UV–vis, IR, Far-IR and ESR characterizations of the catalysts suggest that the predominant oxidation state of cobalt species is +2 for the catalysts with low cobalt loading (≤2 mol%) and for the catalysts with 4 mol% cobalt loading prepared by sol–gel and co-precipitation. Co3O4 crystallites or agglomerates are the predominant species in the catalysts with high cobalt loading prepared by incipient wetness impregnation and solid dispersion. An optimized CoOx/Al2O3 catalyst shows high activity in SCR of NO by C3H8 (100% conversion of NO at 723 K, GHSV: 10,000 h−1). The activity of the selective catalytic reduction of NO by C3H8 increases with the increase of cobalt–alumina interactions in the catalysts. The influences of cobalt loading and catalyst preparation method on the catalytic performance suggest that tiny CoAl2O4 crystallites highly dispersed on alumina are responsible for the efficient catalytic reduction of NO, whereas Co3O4 crystallites catalyze the combustion of C3H8 only.  相似文献   

3.
Mn effect and characterization on γ-Al2O3-, -Al2O3- and SiO2-supported Ru catalysts were investigated for Fischer–Tropsch synthesis under pressurized conditions. In the slurry phase Fischer–Tropsch reaction, γ-Al2O3 catalysts showed higher performance on CO conversion and C5+ selectivity than -Al2O3 and SiO2 catalysts. Moreover, Ru/Mn/γ-Al2O3 exhibited high resistance to catalyst deactivation and other catalysts were deactivated during the reaction. From characterization results on XRD, TPR, TEM, XPS and pore distribution, Ru particles were clearly observed over the catalysts, and γ-Al2O3 catalysts showed a moderate pore and particle size such as 8 nm, where -Al2O3 and SiO2 showed highly dispersed ruthenium particles. The addition of Mn to γ-Al2O3 enhanced the removal of chloride from RuCl3, which can lead to the formation of metallic Ru with moderate particle size, which would be an active site for Fischer–Tropsch reaction. Concomitantly, manganese chloride is formed. These schemes can be assigned to the stable nature of Ru/Mn/γ-Al2O3 catalyst.  相似文献   

4.
The activity and selectivity of rhenium promoted cobalt Fischer–Tropsch catalysts supported on Al2O3, TiO2 and SiO2 have been studied in a fixed-bed reactor at 483 K and 20 bar. Exposure of the catalysts to water added to the feed deactivates the Al2O3 supported catalyst, while the activity of the TiO2 and SiO2 supported catalysts increased. However, at high concentrations of water both the SiO2 and TiO2 supported catalyst deactivated. Common for all catalysts was an increase in C5+ selectivity and a decrease in the CH4 selectivity by increasing the water partial pressure. The catalysts have been characterized by scanning transmission electron microscope (STEM), BET, H2 chemisorption and X-ray diffraction (XRD).  相似文献   

5.
The effects of promotion with ruthenium on the structure of cobalt catalysts and their performance in Fischer–Tropsch synthesis were studied using MCM-41 and SBA-15 as catalytic supports. The catalysts were characterized by N2 physisorption, H2-temperature programmed reduction, in situ magnetic measurements, X-ray diffraction and X-ray photoelectron spectroscopy. It was found that monometallic cobalt catalysts supported by smaller pore mesoporous silicas (dp = 3–4 nm) had much lower activity in Fischer–Tropsch synthesis than their larger pore counterparts (dp = 5–6 nm). Promotion with ruthenium of smaller pore cobalt catalysts led to a considerable increase in Fischer–Tropsch reaction rate, while the effect of the promotion with ruthenium was less significant with the catalysts supported by larger pore silicas.Characterizations of smaller pore cobalt catalysts revealed strong impact of ruthenium promotion on the repartition of cobalt between reducible Co3O4 phase and barely reducible amorphous cobalt silicate in the calcined catalyst precursors. Smaller pore monometallic cobalt catalysts showed high fraction of barely reducible cobalt silicate. Promotion with ruthenium led to a significant increase in the fraction of reducible Co3O4 and in decrease in the amount of cobalt silicate. In both calcined monometallic and Ru-promoted cobalt catalysts supported by larger pore silicas, easy reducible Co3O4 was the dominant phase. Promotion with ruthenium of larger pore catalysts had smaller influence on cobalt dispersion, fraction of reducible cobalt phases and thus on catalytic performance.  相似文献   

6.
A. M. Saib  M. Claeys  E. van Steen   《Catalysis Today》2002,71(3-4):395-402
The influence of the effect of average pore diameter of silica support on the physical and chemical properties of supported cobalt catalysts and their performance in the Fischer–Tropsch synthesis was investigated. Silicas with different mean pore diameter (20, 40, 60, 100 and 150 Å) were impregnated with cobalt nitrate to produce catalysts containing 20 wt.% cobalt. The metal crystallite size and degree of reduction was found to increase with increasing pore diameter of the support for supports with an average pore diameter larger or equal to 40 Å, and hence the dispersion decreased. In impregnated catalysts, the metal crystallites seems to appear in clusters on the support. With increasing average pore diameter, the size of these clusters increases. In the Fischer–Tropsch synthesis, the 100 Å supported catalyst proved to be the most active and selective catalyst for hydrocarbon formation. The C5+ and methane selectivity passed through a maximum and minimum at the 100 Å supported catalyst, respectively, which can be explained quantitatively using the reactant transport model proposed by Iglesia et al.  相似文献   

7.
The influence of catalyst pre-treatment temperature (650 and 750 °C) and oxygen concentration (λ = 8 and 1) on the light-off temperature of methane combustion has been investigated over two composite oxides, Co3O4/CeO2 and Co3O4/CeO2–ZrO2 containing 30 wt.% of Co3O4. The catalytic materials prepared by the co-precipitation method were calcined at 650 °C for 5 h (fresh samples); a portion of them was further treated at 750 °C for 7 h, in a furnace in static air (aged samples).

Tests of methane combustion were carried out on fresh and aged catalysts at two different WHSV values (12 000 and 60 000 mL g−1 h−1). The catalytic performance of Co3O4/CeO2 and Co3O4/CeO2–ZrO2 were compared with those of two pure Co3O4 oxides, a sample obtained by the precipitation method and a commercial reference. Characterization studies by X-ray diffraction (XRD), BET and temperature-programmed reduction (TPR) show that the catalytic activity is related to the dispersion of crystalline phases, Co3O4/CeO2 and Co3O4/CeO2–ZrO2 as well as to their reducibility. Particular attention was paid to the thermal stability of the Co3O4 phase in the temperature range of 750–800 °C, in both static (in a furnace) and dynamic conditions (continuous flow). The results indicate that the thermal stability of the phase Co3O4 heated up to 800 °C depends on the size of the cobalt oxide crystallites (fresh or aged samples) and on the oxygen content (excess λ = 8, stoichiometric λ = 1) in the reaction mixture. A stabilizing effect due to the presence of ceria or ceria–zirconia against Co3O4 decomposition into CoO was observed.

Moreover, the role of ceria and ceria–zirconia is to maintain a good combustion activity of the cobalt composite oxides by dispersing the active phase Co3O4 and by promoting the reduction at low temperature.  相似文献   


8.
The catalytic activity study of cobalt oxides dispersed on different supports evidenced first the highest performances of zirconia based catalysts in the reaction of toluene oxidation. The influence of the presence of ethylenediamine (en) during the preparation of Co/ZrO2 and the ZrO2 support modification by Y2O3 were then studied and compared with reference catalyst prepared conventionally by impregnation of ZrO2 with an aqueous solution of Co(NO3)2. Addition of an aqueous solution of ethylenediamine to a cobalt nitrate solution led to a strong increase on the catalytic activity of the activated solids in the toluene deep oxidation as compared with the reference catalyst. The best catalytic results were explained in terms of cobalt oxides dispersion but also in terms of Co–support interaction. The generated cobalt species were reducible at much lower temperatures and then were more active in the toluene total oxidation. Finally an efficient catalyst for VOC oxidation was produced combining the modifications of ZrO2 by yttrium and of the precursor.  相似文献   

9.
We examined the effect of the activation process on the structural and morphological characteristics of a cobalt-based catalyst for Fischer–Tropsch synthesis. A 10 wt.% Co/SiO2 catalyst prepared by wet impregnation was separately activated under H2, CO or a H2/CO mixture. The structural changes during activation from 298 to 773 K were studied by in situ X-ray diffraction. Catalysts were examined by SEM, TEM, XPS and in situ DRIFT-MS. The H2/CO activation produced redispersion of cobalt particles and simultaneous carbon nanostructures formation. The catalyst showed the highest performance in the Fischer–Tropsch synthesis after the H2/CO activation.  相似文献   

10.
Monolithic structures made of cordierite, γ-Al2O3 and steel have been prepared as catalysts and tested for Fischer–Tropsch activity. The monoliths made of cordierite and steel were washcoated with a 20 wt.% Co–1 wt.% Re/γ-Al2O3 Fischer–Tropsch catalyst whereas the γ-Al2O3 monoliths were made by direct impregnation with an aqueous solution of the Co and Re salts resulting in a loading of 12 wt.% Co and 0.5 wt.% Re. The activity and selectivity of the different monoliths were compared with the corresponding powder catalysts.

Higher washcoat loadings resulted in decreased C5+ selectivity and olefin/paraffin ratios due to increased transport limitations. The impregnated γ-Al2O3 monoliths also showed similar C5+ selectivities as powder catalysts of small particle size (38–53 μm). Lower activities were observed with the steel monoliths probably due to experimental problems.  相似文献   


11.
Carbon nanotubes supported iron catalysts were prepared by incipient wetness, deposition/precipitation using K2CO3, and deposition/precipitation using urea. The incipient wetness method and the deposition/precipitation technique using urea yielded highly dispersed Fe3+ on the carbon nanotubes support. The deposition/precipitation technique using K2CO3 also yielded larger Fe2O3-crystallites. After reduction the three catalysts had similar metal surface areas. Nevertheless, the activity of these catalysts in the Fischer–Tropsch synthesis differed significantly with the catalyst prepared by incipient wetness being the most active one. It is speculated that the differences in the performance of the catalysts might be attributed to the different crystallite size distributions, which would result in a variation in the amount of the different phases present in the catalyst under reaction conditions. The selectivity in the Fischer–Tropsch synthesis over the three catalysts seems to be independent of the method of preparation.  相似文献   

12.
The conversion of CO/H2, CO2/H2 and (CO+CO2)/H2 mixtures using cobalt catalysts under typical Fischer–Tropsch synthesis conditions has been carried out. The results show that in the presence of CO, CO2 hydrogenation is slow. For the cases of only CO or only CO2 hydrogenation, similar catalytic activities were obtained but the selectivities were very different. For CO hydrogenation, normal Fischer–Tropsch synthesis product distributions were observed with an of about 0.80; in contrast, the CO2 hydrogenation products contained about 70% or more of methane. Thus, CO2 and CO hydrogenation appears to follow different reaction pathways. The catalyst deactivates more rapidly for the conversion of CO than for CO2 even though the H2O/H2 ratio is at least two times larger for the conversion of CO2. Since the catalyst ages more slowly in the presence of the higher H2O/H2 conditions, it is concluded that water alone does not account for the deactivation and that there is a deactivation pathway that involves the assistance of CO.  相似文献   

13.
The influence of the ZrO2 support modification by Y2O3 and the presence of ethylenediamine (“en”) during the preparation of Co/ZrO2 were studied and compared with a reference catalyst conventionally prepared by impregnation of ZrO2 with an aqueous solution of Co(NO3)2. The effect of the en/Co molar ratio (x = 1–3) was studied. Activation of cobalt species was followed by differential thermal and thermogravimetric analyses (DTA/TG) analyses and by specific surface area measurements which evidence the complete cobalt precursor decomposition at 450 °C, whatever the support composition and the en/Co molar ratio. The addition of an aqueous solution of ethylenediamine to a cobalt nitrate solution led to a strong increase in the catalytic activity of the activated solids for the toluene deep oxidation as compared to the reference catalyst. The best catalytic results were explained in terms of cobalt oxides dispersion (X-ray diffraction (XRD)) and also in terms of Co-support interaction (H2-temperature-programmed reduction (TPR)). The generated cobalt species were reducible at much lower temperatures and were more active in the toluene total oxidation. Finally, an efficient catalyst was produced combining the modifications of the support by yttrium oxide and of the precursor (use of ethylenediamine).  相似文献   

14.
A series of CeO2 promoted cobalt spinel catalysts were prepared by the co-precipitation method and tested for the decomposition of nitrous oxide (N2O). Addition of CeO2 to Co3O4 led to an improvement in the catalytic activity for N2O decomposition. The catalyst was most active when the molar ratio of Ce/Co was around 0.05. Complete N2O conversion could be attained over the CoCe0.05 catalyst below 400 °C even in the presence of O2, H2O or NO. Methods of XRD, FE-SEM, BET, XPS, H2-TPR and O2-TPD were used to characterize these catalysts. The analytical results indicated that the addition of CeO2 could increase the surface area of Co3O4, and then improve the reduction of Co3+ to Co2+ by facilitating the desorption of adsorbed oxygen species, which is the rate-determining step of the N2O decomposition over cobalt spinel catalyst. We conclude that these effects, caused by the addition of CeO2, are responsible for the enhancement of catalytic activity of Co3O4.  相似文献   

15.
A series of cobalt–cerium mixed oxide catalysts (Co3O4–CeO2) with a Ce/Co molar ratio of 0.05 were prepared by co-precipitation (with K2CO3 and KOH as the respective precipitant), impregnation, citrate, and direct evaporation methods and then tested for the catalytic decomposition of N2O. XRD, BET, XPS, O2-TPD and H2-TPR methods were used to characterize the catalysts. Catalysts with a trace amount of residual K exhibited higher catalytic activities than those without. The presence of appropriate amount of K in Co3O4–CeO2 may improve the redox property of Co3O4, which is important for the decomposition of N2O. When the amount of K was constant, the surface area became the most important factor for the reaction. The co-precipitation-prepared catalyst with K2CO3 as precipitant exhibited the best catalytic performance because of the presence of ca. 2 mol% residual K and the high surface area. We also discussed the rate-determining step of the N2O decomposition reaction over these Co3O4–CeO2 catalysts.  相似文献   

16.
Co3O4/CeO2 composite oxides with different cobalt loading (5, 15, 30, 50, 70 wt.% as Co3O4) were prepared by co-precipitation method and investigated for the oxidation of methane under stoichiometric conditions. Pure oxides, Co3O4 and CeO2 were used as reference. Characterization studies by X-ray diffraction (XRD), BET, temperature programmed reduction/oxidation (TPR/TPO) and X-ray photoelectron spectroscopy (XPS) were carried out.

An improvement of the catalytic activity and thermal stability of the composite oxides was observed with respect to pure Co3O4 in correspondence of Co3O4–CeO2 containing 30% by weight of Co3O4. The combined effect of cobalt oxide and ceria, at this composition, strongly influences the morphological and redox properties of the composite oxides, by dispersing the Co3O4 phase and promoting the efficiency of the Co3+–Co2+ redox couple. The presence in the sample Co3O4(30 wt.%)–CeO2 of a high relative amount of Ce3+/(Ce4+ + Ce3+) as detected by XPS confirms the enhanced oxygen mobility.

The catalysts stability under reaction conditions was investigated by XRD and XPS analysis of the used samples, paying particular attention to the Co3O4 phase decomposition. Methane oxidation tests were performed over fresh (as prepared) and thermal aged samples (after ageing at 750 °C for 7 h, in furnace). The resistance to water vapour poisoning was evaluated for pure Co3O4 and Co3O4(30 wt.%)–CeO2, performing the tests in the presence of 5 vol.% H2O. A methane oxidation test upon hydrothermal ageing (flowing at 600 °C for 16 h a mixture 5 vol.% H2O + 5 vol.%O2 in He) of the Co3O4(30 wt.%)–CeO2 sample was also performed. All the results confirm the superiority of this composite oxide.  相似文献   


17.
H. Wang  J.L. Ye  Y. Liu  Y.D. Li  Y.N. Qin 《Catalysis Today》2007,129(3-4):305-312
In this paper, Co3O4/CeO2 catalysts for steam reforming of ethanol (SRE) were prepared by co-precipitation and impregnation methods. The catalysts prepared by co-precipitation were very active and selective for SRE. Over 10%Co3O4/CeO2 catalyst, ethanol conversion was close to 100% and hydrogen selectivity was about 70% at 450 °C. The catalysts were characterized by X-ray diffraction, temperature-programmed reduction (TPR) and BET surface area measurements. The preparation method influenced the interaction between cobalt and CeO2 evidently. The incorporation of Co ions into CeO2 crystal lattice resulted in weaker interaction between cobalt and ceria on catalyst surface. In comparison with catalysts prepared by impregnation, more cobalt ions entered into CeO2 lattice, and resulted in weaker interaction between active phase and ceria on surface of Co3O4/CeO2 prepared by co-precipitation. Thus, cobalt oxides was easier to be reduced to metal cobalt which was the key active component for SRE. Meanwhile, the incorporation of Co ions into CeO2 crystal lattice was beneficial for resistance to carbon deposition.  相似文献   

18.
Cobalt catalysts (2–10 wt% Co) supported on silica-rich MCM-22 zeolites have been prepared by impregnation with aqueous Co(NO3)2 solutions. The catalysts are characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), nitrogen adsorption, solid state nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The catalytic properties for the Fischer–Tropsch synthesis (FTS) at 280 °C, 12.5 bar and H2/CO = 2 are evaluated. The catalysts supported on MCM-22 exhibit the highest selectivity to long-chain (C5+) hydrocarbons when MCM-22 supports are synthesized with the appropriate Si/Al ratio.  相似文献   

19.
A series of Co/Al2O3 catalysts were prepared by the incipient wetness impregnation method using γ-Al2O3 support and (CH3COO)2Co·4H2O solutions, followed by calcination at 500–800 °C. Characterization of catalysts was accomplished by several techniques such as thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), physisorption of nitrogen, mercury and helium-based pycnometries, Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and pH of zero charge (PZC). Impregnation of support produced a moderate decrease of its surface area and pore volume and also led to minor changes of its PZC. Depending on preparation conditions (i.e., calcination atmosphere and temperature and metal loading), one or more of the following Co-containing compounds were identified: CoO, Co3O4 and CoAl2O4. The support and prepared Co/Al2O3 catalysts were tested to catalyze the ozonation of aqueous pyruvic acid at pH 2.5. Pyruvic acid was shown refractory towards single ozonation but the use of γ-Al2O3 and Co/Al2O3 catalysts resulted in 56–96% pyruvic acid conversion and 41–78% decrease in DOC after 2 h of ozonation of phosphate-buffered solutions. In the absence of the buffer, conversion rate was enhanced likely as a result of pH increase during the course of the process thus giving rise to the indirect way of ozonation through hydroxyl radicals. Acetic acid was found as the main by-product of pyruvic acid ozonation. Depending on the catalyst used, yield of acetic acid varied from 32 to 49%, values noticeably lower that that obtained from the control non-catalytic ozonation experiment (73%). Differences in catalytic activity amongst the various Co/Al2O3 catalysts investigated were attributed to the different Co active phases deposited on the γ-Al2O3 surface. The following sequence of increasing activity can be inferred from experimental results: CoO, CoAl2O4 and Co3O4. All the Co/Al2O3 catalysts prepared showed good stability as the percentage of cobalt leached out was rather low.  相似文献   

20.
The preparation of alumina-supported β-Mo2C, MoC1−x (x≈0.5), γ-Mo2N, Co–Mo2C, Ni2Mo3N, Co3Mo3N and Co3Mo3C catalysts is described and their hydrodesulfurization (HDS) catalytic properties are compared to conventional sulfide catalysts having similar metal loadings. Alumina-supported β-Mo2C and γ-Mo2N catalysts (Mo2C/Al2O3 and Mo2N/Al2O3, respectively) are significantly more active than sulfided MoO3/Al2O3 catalysts, and X-ray diffraction, pulsed chemisorption and flow reactor studies of the Mo2C/Al2O3 catalysts indicate that they exhibit strong resistance to deep sulfidation. A model is presented for the active surface of Mo2C/Al2O3 and Mo2N/Al2O3 catalysts in which a thin layer of sulfided Mo exposing a high density of sites forms at the surface of the alumina-supported β-Mo2C and γ-Mo2N particles under HDS conditions. Cobalt promoted catalysts, Co–Mo2C/Al2O3, have been found to be substantially more active than conventional sulfided Co–MoO3/Al2O3 catalysts, while requiring less Co to achieve optimal HDS activity than is observed for the sulfide catalysts. Alumina-supported bimetallic nitride and carbide catalysts (Ni2Mo3N/Al2O3, Co3Mo3N/Al2O3, Co3Mo3C/Al2O3), while significantly more active for thiophene HDS than unpromoted Mo nitride and carbide catalysts, are less active than conventional sulfided Ni–Mo and Co–Mo catalysts prepared from the same oxidic precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号