首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 58 毫秒
1.
Conley H  Lavrik NV  Prasai D  Bolotin KI 《Nano letters》2011,11(11):4748-4752
The remarkable mechanical properties of graphene, the thinnest, lightest, and strongest material in existence, are desirable in applications ranging from composite materials to sensors and actuators. Here, we demonstrate that these mechanical properties are strongly affected by the interaction with the substrate onto which graphene is deposited. By measuring the temperature-dependent deflection of graphene/substrate "bimetallic" cantilevers we determine strain, thermal expansion coefficient, and the adhesion force acting on graphene films attached to a substrate. Graphene deposited on silicon nitride (SiN(x)) is under much larger strain, ε(g) ~ 1.5 × 10(-2), compared to graphene on gold (Au), ε(g) < 10(-3). The thermal expansion coefficient α(g) of graphene attached to SiN(x) is found to be negative, in the range from (- 5... - 1) × 10(-6)K(-1) and smaller in magnitude than α(g) of suspended graphene. We also estimate the interfacial shear strength of the graphene/SiN(x) interface to be ~1 GPa at room temperature.  相似文献   

2.
The thermal boundary resistance between an individual carbon nanotube and a Au surface was measured using a microfabricated hot-film sensor. We used both closed and open-ended multi-walled carbon nanotubes and obtained thermal boundary resistance values of 0.947-1.22 × 10(7) K W(-1) and 1.43-1.76 × 10(7) K W(-1), respectively. Considering all uncertainties, including the contact area, the thermal boundary conductances per unit area were calculated to be 8.6 × 10(7)-2.2 × 10(8) W m(-2) K(-1) for c-axis orientation and 4.2 × 10(8)-1.2 × 10(9) W m(-2) K(-1) for the a-axis. The trend in these values agrees with the predicted conductance dependence on the interface orientation of anisotropic carbon-based materials. However, the measured thermal boundary conductances are found to be much larger than the reported results.  相似文献   

3.
Superior thermal conductivity of single-layer graphene   总被引:42,自引:0,他引:42  
We report the measurement of the thermal conductivity of a suspended single-layer graphene. The room temperature values of the thermal conductivity in the range approximately (4.84+/-0.44)x10(3) to (5.30+/-0.48)x10(3) W/mK were extracted for a single-layer graphene from the dependence of the Raman G peak frequency on the excitation laser power and independently measured G peak temperature coefficient. The extremely high value of the thermal conductivity suggests that graphene can outperform carbon nanotubes in heat conduction. The superb thermal conduction property of graphene is beneficial for the proposed electronic applications and establishes graphene as an excellent material for thermal management.  相似文献   

4.
It is well known that graphene is a very promising material due to its excellent physical, chemical, and thermal properties. Previously, ridges in graphene on a substrate were found in epitaxial graphene on a SiC substrate. It was found in this study that ridges can be made on a graphene layer via mechanical exfoliation on a sapphire substrate, and that ridges can be created or removed through heating and cooling. Due to the difference of the thermal-expansion coefficients of the substrate and graphene, it can be said that thermal cycling causes compressive strain, which is released by forming ridges. Annealing was carried out in a vacuum chamber within the pressure range of 10(-3)-10(-6) Torr and at 900-1100 degrees C. To analyze the shapes and mechanical properties of the ridges, Raman spectroscopy and AFM measurement were performed. It was found that the ridges can be extended by defect as a nucleation center, and the graphene layer can be folded along the preexisting ridge during heating and cooling.  相似文献   

5.
The thermal conductance across the one-dimensional (1D) interface between a MoS2 monolayer and Au electrode (edge-contact) has been investigated using molecular dynamics simulations.Although the thermal conductivity of monolayer MoS2 is 2-3 orders of magnitude lower than that of graphene,the covalent bonds formed at the interface enable interfacial thermal conductance (ITC) that is comparable to that of a graphene-metal interface.Each covalent bond at the interface serves as an independent channel for thermal conduction,allowing ITC to be tuned linearly by changing the interfacial bond density (controlling S vacandes).In addition,different Au surfaces form different bonding configurations,causing large ITC variations.Interestingly,the S vacancies in the central region of MoS2 only slightly affect the ITC,which can be explained by a mismatch of the phonon vibration spectra.Further,at room temperature,ITC is primarily dominated by phonon transport,and electron-phonon coupling plays a negligible role.These results not only shed light on the phonon transport mechanisms across 1D metal-MoS2 interfaces,but also provide guidelines for the design and optimization of such interfaces for thermal management in MoS2-based electronicdevices.  相似文献   

6.
In this paper we present a study of graphene produced by chemical vapor deposition (CVD) under different conditions with the main emphasis on correlating the thermal and electrical properties with the degree of disorder. Graphene grown by CVD on Cu and Ni catalysts demonstrates the increasing extent of disorder at low deposition temperatures as revealed by the Raman peak ratio, IG/ID. We relate this ratio to the characteristic domain size, La, and investigate the electrical and thermal conductivity of graphene as a function of La. The electrical resistivity, ρ, measured on graphene samples transferred onto SiO2/Si substrates shows linear correlation with La(-1). The thermal conductivity, K, measured on the same graphene samples suspended on silicon pillars, on the other hand, appears to have a much weaker dependence on La, close to K~La1/3. It results in an apparent ρ~K3 correlation between them. Despite the progressively increasing structural disorder in graphene grown at lower temperatures, it shows remarkably high thermal conductivity (10(2)-10(3) W K(-1) m(-1)) and low electrical (10(3)-3×10(5) Ω) resistivities suitable for various applications.  相似文献   

7.
We found that the optimized mixture of graphene and multilayer graphene, produced by the high-yield inexpensive liquid-phase-exfoliation technique, can lead to an extremely strong enhancement of the cross-plane thermal conductivity K of the composite. The "laser flash" measurements revealed a record-high enhancement of K by 2300% in the graphene-based polymer at the filler loading fraction f = 10 vol %. It was determined that the relatively high concentration of the single-layer and bilayer graphene flakes (~10-15%) present simultaneously with the thicker multilayers of large lateral size (~1 μm) were essential for the observed unusual K enhancement. The thermal conductivity of the commercial thermal grease was increased from an initial value of ~5.8 W/mK to K = 14 W/mK at the small loading f = 2%, which preserved all mechanical properties of the hybrid. Our modeling results suggest that graphene-multilayer graphene nanocomposite used as the thermal interface material outperforms those with carbon nanotubes or metal nanoparticles owing to graphene's aspect ratio and lower Kapitza resistance at the graphene-matrix interface.  相似文献   

8.
An electron-phonon interaction model is proposed and applied to thermal transport in semiconductors at micro/nanoscales. The high electron energy induced by the electric field in a transistor is transferred to the phonon system through electron-phonon interaction in the high field region of the transistor. Due to this fact, a hot spot occurs, which is much smaller than the phonon mean free path in the Si-layer. The full phonon dispersion model based on the Boltzmann transport equation (BTE) with the relaxation time approximation is applied for the interactions among different phonon branches and different phonon frequencies. The Joule heating by the electron-phonon scattering is modeled through the intervalley and intravalley processes for silicon by introducing average electron energy. The simulation results are compared with those obtained by the full phonon dispersion model which treats the electron-phonon scattering as a volumetric heat source. The comparison shows that the peak temperature in the hot spot region is considerably higher and more localized than the previous results. The thermal characteristics of each phonon mode are useful to explain the above phenomena. The optical mode phonons of negligible group velocity obtain the highest energy density from electrons, and resides in the hot spot region without any contribution to heat transport, which results in a higher temperature in that region. Since the acoustic phonons with low group velocity show the higher energy density after electron-phonon scattering, they induce more localized heating near the hot spot region. The ballistic features are strongly observed when phonon-phonon scattering rates are lower than 4 x 10(10) S(-1).  相似文献   

9.
将粒度为F280的SiC颗粒振实后直接无压浸渗液态AlSi12Mg8铝合金,制备出高SiC含量的铝基复合材料,并对其结构和性能进行了研究。结果表明:采用该方法制备的SiC/A1复合材料内部组织结构均匀致密,无明显气孔等缺陷,界面产物主要为Mg2Si,MgO,MgAl2O4;平均密度为2.93 g·cm-3,抗弯强度在320 MPa以上,热膨胀系数为6.14×10-6~9.24×10-6 K-1,导热系数为173 W·m-1·K-1,均满足电子封装材料要求。  相似文献   

10.
Silicon carbide (SiC) with epitaxial graphene (EG/SiC) shows a great potential in the applications of electronic and photoelectric devices. The performance of devices is primarily dependent on the interfacial heterojunction between graphene and SiC. Here, the band structure of the EG/SiC heterojunction is experimentally investigated by Kelvin probe force microscopy. The dependence of the barrier height at the EG/SiC heterojunction to the initial surface state of SiC is revealed. Both the barrier height and band bending tendency of the heterojunction can be modulated by controlling the surface state of SiC, leading to the tuned carrier transport behavior at the EG/SiC interface. The barrier height at the EG/SiC(000‐1) interface is almost ten times that of the EG/SiC(0001) interface. As a result, the amount of carrier transport at the EG/SiC(000‐1) interface is about ten times that of the EG/SiC(0001) interface. These results offer insights into the carrier transport behavior at the EG/SiC heterojunction by controlling the initial surface state of SiC, and this strategy can be extended in all devices with graphene as the top layer.  相似文献   

11.
Shim J  Lui CH  Ko TY  Yu YJ  Kim P  Heinz TF  Ryu S 《Nano letters》2012,12(2):648-654
We report on the existence of water-gated charge doping of graphene deposited on atomically flat mica substrates. Molecular films of water in units of ~0.4 nm thick bilayers were found to be present in regions of the interface of graphene/mica heterostacks prepared by micromechanical exfoliation of kish graphite. The spectral variation of the G and 2D bands, as visualized by Raman mapping, shows that mica substrates induce strong p-type doping in graphene with hole densities of (9 ± 2) × 10(12) cm(-2). The ultrathin water films, however, effectively block interfacial charge transfer, rendering graphene significantly less hole-doped. Scanning Kelvin probe microscopy independently confirmed a water-gated modulation of the Fermi level by 0.35 eV, which is in agreement with the optically determined hole density. The manipulation of the electronic properties of graphene demonstrated in this study should serve as a useful tool in realizing future graphene applications.  相似文献   

12.
Here, we report the tuning of room-temperature magnon frequencies from 473 GHz to 402 GHz (14%) and magnetic moment from 4 to 18 emu∕cm(3) at 100 Oe under the application of external electric fields (E) across interdigital electrodes in BiFeO(3) (BFO) thin films. A decrease in magnon frequencies and increase in phonon frequencies were observed with Magnon and phonon Raman intensities are asymmetric with polarity, decreasing with positive E (+E) and increasing with negative E (-E) where polarity is with respect to in-plane polarization P. The magnetoelectric coupling (α) is proved to be linear and a rather isotropic α?=?8.5?×?10(-12) sm(-1).  相似文献   

13.
We report on noise and thermal conductance measurements taken in order to determine an upper bound on the performance of graphene as a terahertz photon detector. The main mechanism for sensitive terahertz detection in graphene is bolometric heating of the electron system. To study the properties of a device using this mechanism to detect terahertz photons, we perform Johnson noise thermometry measurements on graphene samples. These measurements probe the electron–phonon behavior of graphene on silicon dioxide at low temperatures. Because the electron–phonon coupling is weak in graphene, superconducting contacts with large gap are used to confine the hot electrons and prevent their out-diffusion. We use niobium nitride leads with a \(T_\mathrm {c}\approx 10\)  K to contact the graphene. We find these leads make good ohmic contact with very low contact resistance. Our measurements find an electron–phonon thermal conductance that depends quadratically on temperature above 4 K and is compatible with single terahertz photon detection.  相似文献   

14.
高分子材料的绝热特性极大地限制了其作为导热材料在工业中的应用。选用多层石墨烯作为导热填料,并分别与导热填料氧化铝(Al_2O_3)和碳化硅(SiC)复配,探究导热填料的复配对尼龙6(PA6)复合材料导热性能的影响。加入质量分数为3%石墨烯时,PA6复合材料的热导率为0.548W·m-1·K-1,相比PA6基体提高161%。通过调节石墨烯与Al_2O_3和SiC复配的比例以及复合填料量,PA6复合材料的热导率可控在0.653~4.307W·m-1·K-1之间,最高是PA6基体的20倍。为拓展石墨烯在导热材料方面的应用及PA6导热材料在工业上应用提供了有价值的实验依据。  相似文献   

15.
Thermal conductivity of isotopically modified graphene   总被引:1,自引:0,他引:1  
In addition to its exotic electronic properties graphene exhibits unusually high intrinsic thermal conductivity. The physics of phonons--the main heat carriers in graphene--has been shown to be substantially different in two-dimensional (2D) crystals, such as graphene, from in three-dimensional (3D) graphite. Here, we report our experimental study of the isotope effects on the thermal properties of graphene. Isotopically modified graphene containing various percentages of 13C were synthesized by chemical vapour deposition (CVD). The regions of different isotopic compositions were parts of the same graphene sheet to ensure uniformity in material parameters. The thermal conductivity, K, of isotopically pure 12C (0.01% 13C) graphene determined by the optothermal Raman technique, was higher than 4,000?W?mK(-1) at the measured temperature T(m)~320?K, and more than a factor of two higher than the value of K in graphene sheets composed of a 50:50 mixture of 12C and 13C. The experimental data agree well with our molecular dynamics (MD) simulations, corrected for the long-wavelength phonon contributions by means of the Klemens model. The experimental results are expected to stimulate further studies aimed at a better understanding of thermal phenomena in 2D crystals.  相似文献   

16.
Yoon D  Son YW  Cheong H 《Nano letters》2011,11(8):3227-3231
The thermal expansion coefficient (TEC) of single-layer graphene is estimated with temperature-dependent Raman spectroscopy in the temperature range between 200 and 400 K. It is found to be strongly dependent on temperature but remains negative in the whole temperature range with a room temperature value of (-8.0 ± 0.7) × 10(-6) K(-1). The strain caused by the TEC mismatch between graphene and the substrate plays a crucial role in determining the physical properties of graphene, and hence its effect must be accounted for in the interpretation of experimental data taken at cryogenic or elevated temperatures.  相似文献   

17.
Recent reports on thermal and thermoelectric properties of emerging 2D materials have shown promising results. Among these materials are Zirconium-based chalcogenides such as zirconium disulfide (ZrS2), zirconium diselenide (ZrSe2), zirconium trisulfide (ZrS3), and zirconium triselenide (ZrSe3). Here, the thermal properties of these materials are investigated using confocal Raman spectroscopy. Two different and distinctive Raman signatures of exfoliated ZrX2 (where X = S or Se) are observed. For 2D-ZrX2, Raman modes are in alignment with those reported in literature. However, for quasi 1D-ZrX2, Raman modes are identical to exfoliated ZrX3 nanosheets, indicating a major lattice transformation from 2D to quasi-1D. Raman temperature dependence for ZrX2 are also measured. Most Raman modes exhibit a linear downshift dependence with increasing temperature. However, for 2D-ZrS2, a blueshift for A1g mode is detected with increasing temperature. Finally, phonon dynamics under optical heating for ZrX2 are measured. Based on these measurements, the calculated thermal conductivity and the interfacial thermal conductance indicate lower interfacial thermal conductance for quasi 1D-ZrX2 compared to 2D-ZrX2, which can be attributed to the phonon confinement in 1D. The results demonstrate exceptional thermal properties for Zirconium-based materials, making them ideal for thermoelectric device applications and future thermal management strategies.  相似文献   

18.
Raman spectroscopy was used to measure Raman spectra of the inner SiC fibers and surface C-rich layers of SiC fibers, composite precursors and SiCf/Ni-Cr-Al composites. The residual stresses of the inner SiC fibers and surface C-rich layers were calculated, and the effect of the(Al + Al_2O_3) diffusion barrier layer on the interfacial residual stress in the composites was analyzed in combination with the interface microstructure and energy disperse spectroscopy(EDS) elements lining maps. The results show that the existence of(Al + Al_2O_3) diffusion barrier improves the compatibility of the SiCf/Ni-Cr-Al interface,inhibits the adverse interfacial reaction, and relieves the residual stress inside SiC fibers and at the interface of composite material. Heat treatment can reduce the residual stress at the interface. As the heat treatment time increases, the residual stress at the interface decreases.  相似文献   

19.
Nika DL  Askerov AS  Balandin AA 《Nano letters》2012,12(6):3238-3244
We investigated the thermal conductivity K of graphene ribbons and graphite slabs as the function of their lateral dimensions. Our theoretical model considered the anharmonic three-phonon processes to the second-order and included the angle-dependent phonon scattering from the ribbon edges. It was found that the long mean free path of the long-wavelength acoustic phonons in graphene can lead to an unusual nonmonotonic dependence of the thermal conductivity on the length L of a ribbon. The effect is pronounced for the ribbons with the smooth edges (specularity parameter p > 0.5). Our results also suggest that, contrary to what was previously thought, the bulk-like three-dimensional phonons in graphite make a rather substantial contribution to its in-plane thermal conductivity. The Umklapp-limited thermal conductivity of graphite slabs scales, for L below ~30 μm, as log(L), while for larger L, the thermal conductivity approaches a finite value following the dependence K(0) - A × L(-1/2), where K(0) and A are parameters independent of the length. Our theoretical results clarify the scaling of the phonon thermal conductivity with the lateral sizes in graphene and graphite. The revealed anomalous dependence K(L) for the micrometer-size graphene ribbons can account for some of the discrepancy in reported experimental data for graphene.  相似文献   

20.
Composites incorporating various vol.% (0.0, 1.1, 6.4, and 10.4) of multiwall carbon nanotubes (MWCNTs) in alumina were consolidated by the spark plasma sintering. Their thermal transport properties were investigated over the temperature range 300–800 K as a function of nanotube contents. It was observed that the temperature-dependent effective thermal conductivity decreases with the addition of MWCNTs in alumina. This behavior was analyzed in terms of phonon mean free path, elastic modulus, average sound speed, and interface thermal resistance. Compared with 1/T behavior for pristine alumina, a subtle decrease in temperature dependence of the thermal conductivity of the composites with the addition of MWCNTs is observed, indicating the presence of extra phonon scattering mechanism beyond the intrinsic phonon–phonon scattering. Simulation of experimental results with theoretical model shows that the large interfacial thermal barrier between MWCNTs and alumina plays a dominant role in controlling thermal transport properties of the composites. In addition to dominant interface thermal resistance other secondary factors such as nanotube agglomeration, processing defects, porosity also contribute for low thermal conductivity at the higher volume fraction of MWCNTs in the composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号