首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 906 毫秒
1.
铁品位为26.06%的铜硫浮选尾矿中残存有少量难浮磁黄铁矿,弱磁选回收其中的磁铁矿时,该部分磁黄铁矿因磁性较强而进入铁精矿中,导致铁精矿硫含量严重超标。为了获得合格铁精矿,对铜硫浮选尾矿弱磁选铁精矿进行了反浮选脱硫试验研究。结果表明,采用1粗1精1扫、中矿顺序返回闭路流程处理铁品位为63.14%、硫含量达2.05%弱磁选精矿,最终获得了铁品位为64.53%、含硫0.28%、铁回收率为47.09%的合格铁精矿。弱磁选铁精矿反浮选脱硫效果良好,可作为现场改造的依据。  相似文献   

2.
某含铜高硫磁铁矿石选矿试验   总被引:1,自引:0,他引:1  
唐雪峰 《金属矿山》2011,40(4):162-165
针对某磁铁矿石中含铜且磁黄铁矿含量高的特点,采用弱磁选-弱磁选精矿反浮选脱硫-弱磁选尾矿浮铜工艺进行选矿试验,获得了铁品位为66.85%,铁回收率为67.82%,硫含量仅0.20%的铁精矿和铜品位为23.40%,铜回收率为64.06%的铜精矿以及硫品位为23.05%的附加产品硫精矿,实现了铁、铜、硫的综合回收。草酸对磁黄铁矿的选择性活化作用和新型捕收剂CYS对磁黄铁矿的强捕收能力是磁铁矿与磁黄铁矿得以高效分离的关键。  相似文献   

3.
某细粒低品位铁矿石中磁铁矿与磁黄铁矿紧密共生, 为了在回收磁铁矿的同时, 综合回收伴生的磁黄铁矿资源, 针对矿石性质特点, 采用阶段磨矿-阶段弱磁选-一段磁选精矿浮选脱硫-二段磁选精矿反浮选提铁-反浮选尾矿再磨再选工艺流程, 使用磁黄铁矿高效活化剂CS和铁矿反浮选新型阳离子捕收剂YA, 获得了TFe品位70.05%、S含量0.16%、TFe回收率73.17%的高品位铁精矿和S品位25.86%、TFe含量50.10%、S回收率53.43%的硫精矿, 有效实现了磁铁矿与磁黄铁矿的综合回收。  相似文献   

4.
叶军建  张覃  周颖  姜毛  李先海 《金属矿山》2011,40(12):145-147
为分离某硫铁矿尾矿经弱磁选后所得精矿中主要以磁铁矿和磁黄铁矿形式存在的铁和硫,使该资源得到利用,对其进行了再选试验。试验结果表明,采用浮选-弱磁选-焙烧工艺可达到分离目的:原磁选精矿经浮选后,可获得硫品位为31.08%、硫回收率为82.91%的硫精矿;浮选尾矿经弱磁选和焙烧后,可获得铁品位为62.61%、硫含量为0.21%、SiO2含量为3.87%、对原磁选精矿铁回收率为31.03%的铁精矿。将所得硫精矿模拟制酸焙烧后对烧渣进行检测,烧渣铁品位为61.08%、硫含量为0.23%、SiO2含量为5.09%,可直接作为铁精矿利用。  相似文献   

5.
对某高氟铁矿进行了系统脱氟工艺研究,查明了矿石中氟的赋存状态和嵌布关系,分别开展了阶段磨矿-弱磁选、阶段磨矿-弱磁选-淘洗和阶段磨矿-弱磁选-反浮选等脱氟工艺研究,结果表明,阶段磨矿-弱磁选-反浮选-浮选尾矿再磨再选工艺获得了产率27.23%、TFe品位66.34%、回收率70.98%、F含量0.38%的铁精矿,脱氟效果良好。  相似文献   

6.
青海某高硫弱磁选铁精矿铁品位为57.30%,硫品位高达9.35%,主要金属矿物是磁铁矿、磁黄铁矿,铁主要以磁铁矿形式存在,硫主要存在于磁黄铁矿中。为提高铁品位降低硫含量,采用先浮后磁流程进行了提铁降硫试验。结果表明,在磨矿细度为-0.038 5 mm占95.48%条件下,以硫酸为pH调整剂,CuSO_4+Na_2S+H_2C_2O_4为复合活化剂,高级黄药+丁铵黑药为捕收剂,经1粗2扫3精反浮选,反浮选精矿在磁场强度为47.75 kA/m条件下磁选,得到的最终铁精矿铁品位为66.57%、回收率为50.94%,硫品位降至0.82%,达到了用户要求,副产品硫精矿硫品位为53.27%、回收率为38.31%。  相似文献   

7.
某微细粒赤铁矿选矿工艺研究   总被引:3,自引:1,他引:2  
对某微细粒赤铁矿分别采用阶段磨矿—重选—弱磁选—高梯度强磁选—反浮选工艺流程和阶段磨矿—弱磁选—高梯度强磁选—反浮选工艺流程进行了选别试验,前者获得的铁精矿铁品位为64.88%,铁回收率为79.91%,后者获得的铁精矿铁品位为65.45%,铁回收率为79.84%。从选别指标、流程结构及磨矿成本考虑,推荐采用阶段磨矿—弱磁选—高梯度强磁选—反浮选工艺流程。  相似文献   

8.
刘兴华  陈雯 《金属矿山》2014,43(5):64-69
为给新疆某低品位细粒磁铁矿的开发利用提供合理的选矿工艺,针对矿石性质的特点,进行了阶段磨矿、阶段弱磁选工艺和阶段磨矿、阶段弱磁选、阳离子反浮选工艺试验。结果表明:①采用3段磨矿、4次弱磁选的阶段磨选工艺流程处理该矿石,在三段磨矿细度为-0.038 mm占95.18%的情况下,可获得铁品位为66.48%、铁回收率为78.79%的铁精矿;采用2阶段磨矿弱磁选、弱磁精矿2阳离子反浮选、反浮选尾矿再磨-弱磁选抛尾后再返回反浮选的流程处理该矿石,在反浮选尾矿再磨细度为-0.038 mm 占96.34%的情况下,可获得铁品位为69.76%、铁回收率为78.51%的铁精矿。②单一弱磁选流程虽然简洁,但弱磁选、阳离子反浮选联合流程在最后一段磨矿量(相对原矿)显著下降22.99个百分点的情况下,最终精矿铁品位却大幅提高3.28个百分点。  相似文献   

9.
国外某高硫富磁铁矿铁品位57.52%,铁赋存于磁铁矿中,硫含量高达3.82%,61.64%的硫以磁黄铁矿的形式存在。为合理开发利用该矿石,按弱磁选—浮选原则流程对该矿石进行选矿试验。结果表明,在最佳试验参数下,原矿经一段磨矿(-0.076 mm占45%)—1次弱磁选—二段磨矿(-0.076 mm占85%)—1粗1精弱磁选—分步浮选脱硫流程处理,可获得产率65.73%、TFe品位70.34%的铁精矿,硫含量仅0.28%,满足后续钢铁冶炼要求,可为该高硫铁矿石选矿工艺的确定提供技术参考。  相似文献   

10.
新疆某磁铁矿石含TFe 27.30%,S 2.80%,磁铁矿嵌布粒度微细,硫主要以黄铁矿和磁黄铁矿为主,且与磁铁矿关系密切,属于难处理含硫磁铁矿。根据矿石性质,确定采用预先抛尾—磁选—反浮选脱硫的工艺流程,最终获得了TFe品位65.68%、铁回收率71.18%、硫含量0.25%的铁精矿,该工艺为同类型高硫磁铁矿的处理提供了思路。  相似文献   

11.
某铁硫铜复杂多金属矿选矿工艺研究   总被引:5,自引:1,他引:4  
原矿中有用矿物为铁矿物、硫矿物和铜矿物,回收矿物种类较多,磁黄铁矿含量较高,矿石性质较为复杂。利用浮选药剂,改善磁黄铁矿的可浮性,将弱磁选前给矿产品中的硫含量控制在较低的范围。采用磨矿、弱磁选和浮选组合工艺,最终获得了合格的铁精矿和高硫铁精矿、硫精矿和铜精矿产品。  相似文献   

12.
王涛  肖金雄  龙艳 《矿冶工程》2020,40(2):60-62
对安徽某难选磁铁矿与镜铁矿混合矿进行了选矿试验研究, 采用阶段磨矿-弱磁选-筛分-中磁选-强磁选-重选-反浮选工艺流程, 获得了铁精矿产率42.20%、品位66.37%、回收率85.93%的良好指标, 实现了铁矿物的高效分选。  相似文献   

13.
某铁矿石中TFe为32.54%,MFe为23.26%,SiO_2为46.84%,该矿石具有铁矿物种类多、嵌布粒度细等特点。为了高效低能耗开发利用该矿石资源,采用"粗粒抛尾—阶段磨矿阶段弱磁选—精矿反浮选"工艺流程进行选矿试验,获得铁精矿中铁品位为65.13%,回收率为72.18%的试验指标。  相似文献   

14.
安徽某低铜高硫磁铁矿石属嵌布关系复杂的多金属矿石。为了开发利用该矿石,采用优先选铜—活化浮硫—弱磁选选铁—铁精矿反浮选脱硫原则流程进行了选矿试验。结果表明,铁品位为46.62%、铜品位为0.32%、硫品位为20.56%的矿石采用1粗2精1扫浮铜、1粗1精2扫浮硫、1次弱磁选铁、弱磁选铁精矿1粗1精反浮选脱硫流程处理,最终获得了铜品位为17.09%、回收率为78.64%的铜精矿,铁品位为67.35%、回收率为41.16%、含硫0.28%的铁精矿,以及硫品位为43.69%、回收率为88.79%的硫精矿。该试验结论可作为选矿厂设计的依据。  相似文献   

15.
针对现阶段高铝铁矿石选别后铁精矿中含铝过高的问题,东北大学研制了一种新型、高效的两性螯合捕收剂DTA-2,以某悬浮焙烧后磁选铁精矿为研究对象,进行提铁降铝反浮选试验。结果表明:在常温,自然pH条件下,以DTA-2为捕收剂,淀粉为抑制剂,经1粗1精1扫反浮选流程试验,可以获得精矿TFe品位66.80%、Al2O3品位3.26%的指标。对浮选精矿产品进行分析发现:褐铁矿内部结构相对松散,其中包裹脉石矿物较多;粒度较大氧化铁颗粒周围黏连微粒(多小于1 μm)以氧化铝为主的脉石矿物,微细粒的铁氧化物和以氧化铝为主的脉石矿物集合成磁性聚合体,造成精矿含杂;粒度较粗的氧化铝矿物颗粒内部有微粒(小于1 μm)弥散状氧化铁颗粒,磁选精矿中石英、高岭石、云母、长石矿物与氧化铁矿物连生或微粒单体夹带进入浮选精矿造成精矿杂质含量较高。通过浮选的方法解决了悬浮焙烧后磁选铁精矿含铝过高的实际问题。试验结果对高铝铁矿石的提铁降铝研究具有借鉴意义。  相似文献   

16.
对铁品位62.26%、含硫3.14%的墨西哥某含硫铁矿石开展了提质降杂选矿试验研究。采用浮选-弱磁选-强磁选工艺,可获得精矿产率87.12%、铁回收率92.59%、TFe品位65.17%、S含量0.261%、SiO2含量3.86%的综合铁精矿,同时获得产率7.53%、S品位37.22%的合格硫精矿。该高硫铁矿配入梅山自产原矿混合选铁,生产中通过提高强磁扫选磁场强度,在保证最终铁精矿品位57%前提下,可多从尾矿中回收铁品位32%的弱磁性矿物。  相似文献   

17.
魏茜 《矿冶工程》2013,33(6):46-49
对某低品位难选氧化铁矿进行了阶段磨矿-弱磁-强磁-阴离子反浮选试验研究。首先在磨矿粒度-0.074 mm粒级占65%的条件下通过预先作业抛尾, 因矿石中有用矿物嵌布不均匀, 粒度较细, 选择对粗精矿进行再磨。再磨后的强磁精矿单独反浮选得到浮选精矿与再磨弱磁精矿混合得到最终铁精矿。全流程试验获得了铁品位为61.53%、铁回收率为63.31%的混合铁精矿。  相似文献   

18.
某微细粒嵌布复杂铁矿的选矿工艺流程研究   总被引:2,自引:0,他引:2  
矿石中铁矿物主要以不规则状产出,粒度以微、细粒为主,嵌布关系复杂,且矿物种类繁多,主要为赤铁矿、假象赤铁矿,其次为磁铁矿、褐铁矿、针铁矿及少量菱铁矿,尚有微量磁赤铁矿、自然铁、磷铁矿等;脉石矿物主要为石英,其它是辉石、绿泥石、云母、长石、黏土矿物等;本研究采用合理多段、适当细磨工艺,强化微、细粒赤铁矿及假象赤铁矿的回收。试验推荐重选—磁选—反浮选联合流程,获得品位为67.79%、回收率为83.23%的铁精矿。  相似文献   

19.
广西某高硫铜矿石中滑石等易浮硅质矿物含量高,现场采用弱磁选-浮铜-浮硫工艺流程进行分选,除弱磁选能较好地回收磁黄铁矿外,黄铜矿浮选和黄铁矿浮选均因易浮硅质矿物的干扰而难以获得合格精矿。为此,在大量探索试验的基础上,采用弱磁选-黄铜矿和硅质矿物混合浮选-混浮精矿铜硅摇床分离-混浮尾矿浮黄铁矿的工艺流程处理该矿石,获得了磁选硫精矿硫品位和回收率分别为38.69%和64.48%,浮选硫精矿硫品位和回收率分别为44.57%和30.99%,铜精矿铜品位和回收率分别为13.87%和63.89%的良好试验指标,有效地综合回收了铜、硫矿物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号