首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用参数敏感性分析法研究了微膨胀型热开关导热路径上各项不确定因素对其断开热阻、闭合热阻及开关比等关键热特性的影响。通过与性能试验的比对,验证了热开关有限元仿真热模型的正确性。基于该模型,分析了结构组件导热系数和配合面接触热导率与断开热阻、闭合热阻等热特性的关联性,并依据性能指标的绝对/相对变化量对不确定因素进行了敏感性分类。研究表明:定位杆导热系数是关于断开热阻和开关比的敏感参数,敏感性指标分别为6.716m~(0.5)·K/W和5.129 m~(0.5)·K~(0.5)/W~(0.5);冷端-伸缩段间接触热导率是闭合热阻的敏感参数,绝对变化量和敏感性指标分别为1.865K/W和0.267m·K/W,其余配合面的接触热导率均是闭合热阻的不敏感参数;定位杆径向小面接触热导率是断开热阻和开关比的敏感参数,绝对变化量(敏感性指标)分别为56.495K/W(0.307m·K/W)和32.936(0.235m·K~(0.5)/W~(0.5))。所得的结论可为优化微膨胀型热开关的结构性能提供参考与借鉴。  相似文献   

2.
油浸式大型变压器热点温度的动态模型   总被引:1,自引:0,他引:1  
在考虑了油浸变压器油粘度、损耗随温度变化的情况后,根据热传导理论和不同情况下非线性热阻的定义,推导出了可用于估算不同类型变压器绕组热点温度的动态模型.通过ONAN制冷变压器的实测数据和专用模型的验证,表明该模型是正确、有效的.  相似文献   

3.

The role of five-axis CNC machine tools (FAMT) in the manufacturing industry is becoming more and more important, but due to the large number of heat sources of FAMT, the thermal error caused by them will be more complicated. To simplify the complicated thermal error model, this paper presents a new modelling method for compensation of the thermal errors on a cradle-type FAMT. This method uses artificial neural network (ANN) and shark smell optimization (SSO) algorithm to evaluate the performance of FAMT, and developing the thermal error compensation system, the compensation model is verified by machining experiments. Generally, the thermal sensitive point screening is performed by a method in which a large number of temperature sensors are arranged randomly, it increases the workload and may cause omission of the heat sensitive point. In this paper, the thermal imager is used to screen out the temperature sensitive points of the machine tool (MT), then the temperature sensor is placed at the position of the heat sensitive point of the FAMT, and the collected thermal characteristic data is used for thermal error modeling. The C-axis heating test, spindle heating test, and the combined movement test are applied in this work, and the results show that the shark smell optimization artificial neural network (SSO-ANN) model was compared to the other two models and verified better performance than back propagation artificial neural network (BP-ANN) model and particle swarm optimization neural network (PSO) model with the same training samples. Finally, a compensation experiment is carried out. The compensation values, which was calculated by the SSO-ANN model are sent to the real-time error compensation controller. The compensation effect of the model is then tested by machining the ‘S’-shaped test piece. Test results show that the 32 % reduction in machining error is achieved after compensation, which means this method improves the accuracy and robustness of the thermal error compensation system.

  相似文献   

4.
The aim of this paper is to study the effects of pressure and temperature dependence of a conventional lubricant's thermal properties on the behaviour of heavily loaded thermal elastohydrodynamic lubrication (TEHL) contacts. For this purpose, a typical mineral oil (Shell T9) is selected and the dependence of its transport properties on pressure and temperature is investigated. Appropriate models are then developed for these dependencies. The latter are included in a TEHL solver in order to investigate their effect on the behaviour of circular EHD contacts. The results reveal the necessity of a thermal analysis including the pressure and temperature dependence of thermal properties for a good estimation of film thicknesses and mostly traction coefficients in circular EHD contacts operating under severe conditions. Numerical results are compared with experiments, showing a very good agreement over the considered ranges. This thorough validation of a thermal EHL framework for the calculation of film thickness and friction offers a previously unavailable opportunity to investigate the effects of variations in material properties.  相似文献   

5.
GUO  Qianjian  FAN  Shuo  XU  Rufeng  CHENG  Xiang  ZHAO  Guoyong  YANG  Jianguo 《机械工程学报(英文版)》2017,30(3):746-753
Aiming at the problem of low machining accuracy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are researched. Measurement experiment of heat sources and thermal errors are carried out, and GRA(grey relational analysis) method is introduced into the selection of temperature variables used for thermal error modeling. In order to analyze the influence of different heat sources on spindle thermal errors, an ANN(artificial neural network) model is presented, and ABC(artificial bee colony) algorithm is introduced to train the link weights of ANN, a new ABCNN(Artificial bee colony-based neural network) modeling method is proposed and used in the prediction of spindle thermal errors. In order to test the prediction performance of ABC-NN model, an experiment system is developed, the prediction results of LSR(least squares regression), ANN and ABC-NN are compared with the measurement results of spindle thermal errors. Experiment results show that the prediction accuracy of ABC-NN model is higher than LSR and ANN, and the residual error is smaller than 3 lm, the new modeling method is feasible. The proposed research provides instruction to compensate thermal errors and improve machining accuracy of NC machine tools.  相似文献   

6.
Hot forging dies are damaged by the mixed failure modes including wear, thermal cracks, impact cracks, corrosion cracks, etc.. In order to extend the service life of the hot forging die, the diminution technology of the mixed failure modes should be developed. The aim of this paper is to design an overlay coated region consisting of a Hardfacing layer (HL), a Transition layer (TL) and a Damage diminution layer (DDL) to reduce damage of hot forging tools. The HL and the DDL are contrived to improve the wear resistance and the ductility of the overlay coated region, respectively. The TL is adopted to prevent thermal fatigue induced by the difference in the thermal expansion coefficients between successive layers. In order to estimate design alternatives of the overlay coated region, the effects of the thickness and the assignment of the DDL on stress-strain distributions in the overlay coated region are investigated via Finite element analyses (FEAs). The influence of the assignment of the DDL on thermal behaviors of the overlay coated region is investigated through thermal fatigue experiments. From the results of the FEAs and the thermal fatigue experiments, an appropriate design of the overlay coated region is determined.  相似文献   

7.
三线阵立体测绘相机热控系统的设计   总被引:7,自引:3,他引:4  
黎明  吴清文  江帆  黄涛 《光学精密工程》2010,18(6):1367-1373
为了保证测绘相机的正常工作和测绘精度,针对测绘相机的特点设计了热控系统,并对该系统进行了热平衡试验验证。首先,对测绘相机所处的热环境进行了分析,对测绘相机窗口的外热流进行了计算。然后,对测绘相机的各个部分进行了热设计;采用被动热控措施控制相机的温度水平,降低测绘相机系统对外部热环境变化的灵敏度;采取主动热控措施进行温差补偿,减小相机的轴向和对径温差。最后,根据测绘相机的热环境和各种工作模式设计了3种极端试验工况,进行了热平衡试验。试验结果表明,在热控系统工作的情况下,测绘相机系统在各种工况下温度波动在(18±2)℃之内,且轴向温差4℃,径向温差0.5℃,测绘基座的温度在(18±3)℃之内。得到的结果能够满足测绘相机系统的需求。  相似文献   

8.
A new arrangement of two-detector pulsed photothermal radiometry measurement system has been developed enabling temperature dependence measurement of thermal properties of thin films up to high temperatures. Only a few methods are available in this temperature range for thin films' thermal properties investigation, but there is a need for their knowledge in the fields of high-temperature electronics and high-speed machining. The present system enables simultaneous determination of the thin film effusivity, thermal conductivity, and volumetric specific heat in the temperature range from room temperature to 600?°C. The samples are placed in a vacuum chamber. The temperatures in the system were verified by an independent measurement and the system was tested on known bulk samples. Advantages and shortcomings of the method when used at higher temperatures and in the vacuum are described and discussed. Furthermore, Si-B-C-N thin films were studied. These amorphous ceramic materials possess an interesting set of mechanical and thermal properties. In particular, the films of the investigated chemical composition exhibit an excellent thermal stability at temperatures of up to 1700?°C. In the studied temperature range, from 20 to 600?°C, the thermal conductivity increased with increasing temperature from 1.72 to 1.89 W m(-1) K(-1) and volumetric specific heat increased from 2.65 to 3.76 × 10(6) J m(-3) K(-1).  相似文献   

9.
Thermal sensor selection is a work of great importance when modeling thermal error. The proper selection of thermal sensors and their locations may greatly improve the prediction accuracy. In this article, the fuzzy C means (FCM) clustering method and the ISODATA method are used to group the data of thermal sensors and a genetic algorithm–back propagation artificial neural network thermal model is established to testify the accuracy. A validity criterion for the FCM method is put forward to guarantee the precision of the model. Both the FCM and the ISODATA methods are effective for thermal sensor selection.  相似文献   

10.
The atomic force microscope (AFM) is a powerful tool for the measurement of forces at the micro/nano scale when calibrated cantilevers are used. Besides many existing calibration techniques, the thermal calibration is one of the simplest and fastest methods for the dynamic characterization of an AFM cantilever. This method is efficient provided that the Brownian motion (thermal noise) is the most important source of excitation during the calibration process. Otherwise, the value of spring constant is underestimated. This paper investigates noise interference ranges in low stiffness AFM cantilevers taking into account thermal fluctuations and acoustic pressures as two main sources of noise. As a result, a preliminary knowledge about the conditions in which thermal fluctuations and acoustic pressures have closely the same effect on the AFM cantilever (noise interference) is provided with both theoretical and experimental arguments. Consequently, beyond the noise interference range, commercial low stiffness AFM cantilevers are calibrated in two ways: using the thermal noise (in a wide temperature range) and acoustic pressures generated by a loudspeaker. We then demonstrate that acoustic noises can also be used for an efficient characterization and calibration of low stiffness AFM cantilevers. The accuracy of the acoustic characterization is evaluated by comparison with results from the thermal calibration.  相似文献   

11.
The existing investigations on thermal comfort mostly focus on the thermal environment conditions, especially of the air-flow field and the temperature distributions in vehicle cabin. Less attention appears to direct to the thermal comfort or thermal sensation of occupants, even to the relationship between thermal conditions and thermal sensation. In this paper, a series of experiments were designed and conducted for understanding the non-uniform conditions and the occupant's thermal responses in vehicle cabin during the heating period. To accurately assess the transient temperature distribution in cabin in common daily condition, the air temperature at a number of positions is measured in a full size vehicle cabin under natural winter environment in South China by using a discrete thermocouples network. The occupant body is divided into nine segments, the skin temperature at each segment and the occupant's local thermal sensation at the head, body, upper limb and lower limb are monitored continuously. The skin temperature is observed by using a discrete thermocouples network, and the local thermal sensation is evaluated by using a seven-point thermal comfort survey questionnaire proposed by American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc(ASHRAE) Standard. The relationship between the skin temperature and the thermal sensation is discussed and regressed by statistics method. The results show that the interior air temperature is highly non-uniform over the vehicle cabin. The locations where the occupants sit have a significant effect on the occupant's thermal responses, including the skin temperature and the thermal sensation. The skin temperaWa-e and thermal sensation are quite different between body segments due to the effect of non-uniform conditions, clothing resistance, and the human thermal regulating system. A quantitative relationship between the thermal sensation and the skin temperature at each body segment of occupant in real life traffic is presented. The investigation result indicates that the skin temperature is a robust index to evaluate the thermal sensation. Applying the skin temperature to designing and controlling parameters of the heating, ventilation and air conditioning(HVAC) system may benefit the thermal comfort and reducing energy consumption.  相似文献   

12.
龙门数控机床主轴热误差及其改善措施   总被引:3,自引:0,他引:3  
依据ISO和ASME标准建立龙门数控(Numerical control,NC)机床热误差测试条件,通过主轴恒转速和变转速热误差试验分析主轴箱温度场分布及其对主轴热误差的影响趋势。建立龙门机床误差元素模型,分析影响机床各坐标轴加工精度的主轴热误差分量。研究发现,主轴热误差和主轴箱温度存在单调对应关系,温度对主轴轴向的热伸长误差的影响要远大于主轴径向的热漂移误差,但温度变化相对各坐标变形存在热延迟和热惯性等特性。对主轴径向精度影响最大的热误差分量是由机床生热产生的同方向的偏移误差和与之垂直的偏转误差;对轴向精度影响最大的则是轴向的偏移误差。针对热误差特点和分布规律,提出结构优化、热平衡、误差补偿建模等3种减小热误差的措施,并对其各自优点进行了分析。  相似文献   

13.
热预应力自增强厚壁圆筒研究   总被引:2,自引:0,他引:2  
厚壁圆筒自增强处理技术的关键在于预应力。传统的自增强处理技术采用的是机械预应力方法,即在圆筒投入使用前,对其施加超过操作压力的自增强压力,使之获得残余预应力。考虑到厚壁圆筒内、外壁存在温差时,筒壁中有热应力产生,因此针对厚壁圆筒自增强问题,提出了以热应力作为预应力的自增强技术。具体研究了圆筒壁厚、温差等对热应力与总应力(热应力与操作应力的叠加)的影响、热应力与总应力的变化趋势、各种参数间的约束条件;在分析热应力与总应力特性的基础上,得出最佳设计条件,提出了基于第四强度理论的热预应力自增强厚壁圆筒的设计方法。结果表明,热预应力能有效地降低和均化厚壁圆筒的操作应力;按照所提出的设计方法,在确保圆筒安全的前提下,可使圆筒获得最大的承载能力和最小的壁厚。  相似文献   

14.
The 3ω method for thermal conductivity measurement has emerged as an effective technique applicable to micro/nanowires and thin films. This paper describes the adaptation of the method to temperatures as high as 725 K enabling reliable thermal conductivity measurements on such samples for which previously published methods have been found inadequate. In the technique, a sample wire is heated by applying a sinusoidal current at an angular frequency ω, which causes a temperature and resistance variation at an angular frequency, 2ω, leading to a voltage signal at 3ω. The sample is connected as a four-terminal resistor to a digital lock-in amplifier, which is used to detect the in-phase and out-of-phase 3ω voltages resulting from the applied 1ω current. The data are fitted by varying the values of the thermal resistance and diffusion time, both of which are functions of thermal conductivity. Measurements are made at steady state temperatures between 300 and 725 K. Meaningful measurements at elevated temperatures require that thermal losses be understood and minimized. Conduction losses are prevented by suspending the sample above the mounting substrate. Convection losses are minimized by maintaining a vacuum of ~10(-5) torr inside the sample chamber. To minimize radiation losses, an appropriately sized sample is shrouded with a double heat-shield, with the inner shield temperature near that of the sample. Using the 3ω method, the thermal conductivity of platinum was determined to vary between 71.8 and 80.7 Wm(-1) K(-1) over the temperature range of 300 to 725 K, in agreement with published values measured for bulk samples.  相似文献   

15.
Customized engineered fibers are currently being used extensively in the aerospace and automobile industries due to the ability to "design in" specific engineering characteristics. Understanding the thermal conductivity of these new fibers is critical for thermal management and design optimization. In the current investigation, a steady-state dc thermal bridge method (DCTBM) is developed to measure the thermal conductivity of individual poly(ether ketone) (PEK)/carbon nanotube (CNT) fibers. For non-conductive fibers, a thin platinum layer was deposited on the test articles to serve as the heater and temperature sensor. The effect of the platinum layer on the thermal conductivity is presented and discussed. DCTBM is first validated using gold and platinum wires (25 μm in diameter) over a temperature ranging from room temperature to 400 K with ±11% uncertainty, and then applied to PEK/CNT fibers with diverse CNT loadings. At a 28 wt. % CNT loading, the thermal conductivity of fibers at 390 K is over 27 Wm(-1)K(-1), which is comparable to some engineering alloys.  相似文献   

16.
Thermal errors are the major contributor to the dimensional errors of a workpiece in precision machining. Error compensation technique is a cost-effective way to reduce thermal errors. Accurate modeling of errors is a prerequisite of error compensation. In this paper, a thermal error model was proposed by using projection pursuit regression (PPR). The PPR method improves the prediction accuracy of thermal errors in the computer numerical control (CNC) turning center. A thermal error compensation system was developed based on the PPR model, and which has been applied to the CNC turning center in daily production. The results show that the thermal drift in workpiece diameter has been reduced from 34 to 5???m.  相似文献   

17.
Thermal sensitive paints (TSPs) are used for global nonintrusive detection of boundary layer transition in flow over the surface of wind tunnel research models. Since the transition is a transient process, the TSP should have a fast response characteristic. A low paint thermal conductivity is required for fast response. A thin-film thermal conductivity meter (TFTCM) was designed and built to measure thermal conductivity of the TSPs, which are typically between 50 and 150 microm thick. In this paper, the design and operating features of the TFTCM are described. Measurement of the thermal conductivity with this TFTCM of three standard thin-film low conductivity specimens, Kapton, Teflon, and Borofloat glass, showed good agreement with the manufacturer quoted values, thus validating the instrument and the procedure. Consistently repeatable values for thermal conductivity (k=0.41 +/- 0.02 W/m K) were also obtained for the TSP specimen (TSB-B, 75 microm) tested.  相似文献   

18.
In this paper vibration damping capacity of shape memory alloys (SMA) is studied which is based on two-dimensional Oberaigner, Fischer and Tanaka model. The thermodynamic based active and passive control paradigms in SMA are presented. The model solution is presented along with modification based on exact solution for the most general case of a set of conditions based upon general thermal regimes. For the particular cases, four examples of different thermal and mechanical loadings are given. This study incorporates the static thermal changes and dynamic thermal states.  相似文献   

19.
This paper proposes a new modeling methodology to predict thermal error in motorized spindles. The dynamic model predicts thermal errors that are caused by deformation in the motorized spindle structure due to heat flow from internal sources. These thermally induced errors become more serious and dominate the total error when it comes to high speed and high precision. If these thermal errors can be predicted, they can be compensated in real time. In this paper, a new thermal errors model (ARX model) is presented which capitalizes on the notion that the motorized spindle thermoelastic system has very complicated dynamics. Furthermore, the selection principle of temperature key points, which are indispensable for building a robust thermal error model, is provided using the thermal error sensitivity technology. At last, an experiment on the thermal error in a motorized spindle is conducted to verify the effectiveness of the ARX model, the experimental results show that above 80 % of axial thermal errors are predicted for a variety of motorized spindle cycles and the dynamic model has good accuracy and robustness.  相似文献   

20.
Empirical model of machine tools on thermal error has been widely researched, which can compensate for thermal error to some extent but not suitable for thermal dynamic errors produced by dynamic heat sources. The thermoelastic phenomenon of unidimensional heat transfer of ballscrews influenced by changeable heat sources is analyzed based on the theory of heat transfer. Two methods for system identification (the least square system identification and BP artificial neural network (ANN) system identification) are put forward to establish a dynamic characteristic model of thermal deformation of ballscrews. The model of thermal error of the X axis in a feed system of DM4600 vertical miller is established with a fine identification effect. Comparing the results of the two identification methods, the BP ANN system identification is more precise than the least square system identification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号