首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CuO/SnO2 heterostructures as well as SnO2(CuO) polycrystalline films have been studied for H2S sensing. Gas sensing properties of these materials have been compared in conditions: 25–300 ppm H2S in N2 at 100–250°C. A shorter response time of the heterostructures as compared to that of the SnO2(CuO) films has been found. It is suggested that the improvement of dynamic sensor properties of SnO2/CuO heterostructures is caused by the localization of electrical barrier between CuO and SnO2 layers.  相似文献   

2.
The control of the technological steps such as calcination temperature and introduction of catalytic additives are accepted to be key points in the obtaining of improved sol–gel fabricated SnO2 thick film gas sensors with different sensitivity to NO2 and CO. In this work, after proving that the undoped material calcined at 1000°C is optimum for NO2 detection, grinding is added as third technological step for further modification of particle surface characteristics, allowing to reduce cross-sensitivity to CO. The influence of grinding on the base resistance and on the sensor signals to NO2 and CO is discussed in detail as a function of the structural differences of the sensing material.  相似文献   

3.
Potentiometric cell, Au/LiCoO2 5 m/o Co3O4/Li2.88PO3.73N0.14/Li2CO3/Au, has been fabricated and investigated for monitoring CO2 gas. A LiCoO2–Co3O4 mixture was used as the solid-state reference electrode instead of a reference gas. The idea is to keep the lithium activity constant on the reference side using thermodynamic equilibrium at a given temperature. The thermodynamic stability of the reference electrode was studied from the phase stability diagram of Li–Co–C–O system. The Gibb’s free energy of formation of LiCoO2 was estimated at 500°C from the measured value of the cell emf. The sensors showed good reversibility and fast response toward changing CO2 concentrations from 200 to 3000 ppm. The emf values were found to follow a logarithmic Nernstian behavior in the 400–500°C temperature range. CH4 gas did not show any interference effect. Humidity and CO gas decreased the emf values of the sensor slightly. NO and NO2 gases affect this sensor significantly at low temperatures. However, increased operating temperature seems to reduce the interference.  相似文献   

4.
A highly sensitive and fast responding CO sensor was fabricated from a sheet-like SnO2. The SnO sheets were prepared by a room temperature reaction between SnCl2, hydrazine and NaOH, and they were subsequently oxidized into SnO2 sheets at high temperature (600 °C). The morphology and size of the SnO2 sheets could be controlled during the formation of SnO, which influence the sensor response (Ra/Rg) and response time to a great extent. The sensor response of SnO nanosheets to 10 ppm CO was enhanced up to 2.34, and the 90% sensor response time could be reduced to 6 s, which are significantly higher and shorter than those of SnO2 powders (1.57 and 88 s), respectively. The realization of both a high sensitivity and rapid response were explained in terms of rapid gas diffusion onto the entire sensing surface due to the less-agglomerated and very thin structure of SnO2 nanosheets and the catalytic effect of Pt.  相似文献   

5.
Pt-loaded metal oxides [WO3/ZrO2, MOx/TiO2 (MOx = WO3, MoO3, V2O5), WO3 and TiO2] equipped with interdigital Au electrodes have been tested as a NOx (NO and NO2) gas sensor at 500 °C. The impedance value at 4 Hz was used as a sensing signal. Among the samples tested, Pt-WO3/TiO2 showed the highest sensor response magnitude to NO. The sensor was found to respond consistently and rapidly to change in concentration of NO and NO2 in the oxygen rich and moist gas mixture at 500 °C. The 90% response and 90% recovery times were as short as less than 5–10 s. The impedance at 4 Hz of the present device was found to vary almost linearly with the logarithm of NOx (NO or NO2) concentration from 10 to 570 ppm. Pt-WO3/TiO2 showed responses to NO and NO2 of the same algebraic sign and nearly the same magnitude, while Pt/WO3 and WO3/TiO2 showed higher response to NO than NO2. The impedance at 4 Hz in the presence of NO for Pt-WO3/TiO2 was almost equal at any O2 concentration examined (1–99%), while in the case of Pt/WO3 and WO3/TiO2 the impedance increased with the oxygen concentration. The features of Pt-WO3/TiO2 are favorable as a NOx sensor that can monitor and control the NOx concentration in automotive exhaust. The effect of WO3 loading of Pt-WO3/ZrO2-based sensor is studied to discuss the role of surface W-OH sites on the NOx sensing.  相似文献   

6.
Hollow SnO2 spheres were prepared in dimethylfomamide (DMF) by controlled hydrolysis of SnCl2 using newly made carbon microspheres as templates. The phase composition and morphology of the material particles were characterized by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The gas sensing properties of sensors based on the hollow SnO2 spheres were investigated. It was found that the sensor exhibited good performances, characterized by high response, good selectivity and very short response time to dilute (C2H5)3N operating at 150 °C, especially, the response to 1 ppb (C2H5)3N attained 7.1 at 150 °C. It was noteworthy that the response to 0.1 ppm C2H5OH of the sensor was 2.7 at 250 °C.  相似文献   

7.
A polyaniline (PAni)/SnO2 hybrid material was prepared by a hydrothermal method and characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The XRD pattern suggested that PAni did not modify the crystal structure of SnO2, but SnO2 affected the crystallization of PAni to some extent. The gas sensitivity of the PAni/SnO2 hybrid was also studied to ethanol and acetone at operation temperatures of 30, 60 and 90 °C. It was found that the PAni/SnO2 hybrid material had gas sensitivity only when operated at 60 and 90 °C, and it showed a linear relationship between the responses and the concentrations of ethanol and acetone at 90 °C. The sensing mechanism was also discussed.  相似文献   

8.
This paper describes the fabrication procedure as well as the sensing properties of new hydrogen sensors using Fe2O3-based thin film. The film is deposited by the r.f. sputtering technique; its composition is Fe2O3, TiO2(5 mol%) and MgO(0–12 mol%). The conductance change of the film is examined in various test gases. The sensitivity to hydrogen gas is enhanced by treating the film in vacuum at 550 °C for 4 h and then in air at 700 °C for 2 h. The sputtered film is identified to be polycrystalline -Fe2O3 based on X-ray diffraction patterns. However, the surface layer is considered to be changed to Fe3O4 after heating in vacuum and then to γ-Fe2O3 after heating in air. The film is thus a multilayer one with a thin γ-Fe2O3 layer on a -Fe2O3 layer. The sensing mechanism is discussed based on measurements of the physical properties of the film, such as the temperature dependence of the sensor conductance, X-ray diffraction pattern, surface morphology, RBS (Rutherford back-scattering) spectrum and optical absorption spectrum.  相似文献   

9.
F.  Y.  A.  S. 《Sensors and actuators. B, Chemical》2008,130(2):625-629
In our earlier study, we reported that at 300 °C, a 2.0 wt.% CeO2-doped SnO2 sensor is highly selective to ethanol in the presence of CO and CH4 gases [F. Pourfayaz, A. Khodadadi, Y. Mortazavi, S.S. Mohajerzadeh, CeO2 doped SnO2 sensor selective to ethanol in presence of CO, LPG and CH4, Sens. Actuators B 108 (2005) 172–176]. In the present investigation, we report the influence of ambient air humidity on the ethanol selective SnO2 sensor doped with 2.0 wt.% CeO2. Maximum response to ethanol occurs at 300 °C which decreases with the relative humidity. The relative humidity was changed from 0 to 80% for different ambient air temperatures of 30, 40 and 50 °C and the response of the sensor was monitored in a 250–450 °C temperature range. As the relative humidity in 50 °C air increased from 0 to 30%, a 15% reduction in the maximum response to ethanol was observed. A further increase in the relative humidity no longer reduced the response significantly. The presence of humidity improved the sensor response to both CO and CH4 up to 350 °C after which the extent of improvement became smaller and at 450 °C was almost diminished. The sensor is shown to be quite selective to ethanol in the presence of humid air containing CO and CH4. The selectivity passes a maximum at 300 °C; however it declines at higher operating temperatures.  相似文献   

10.
The powder sample of Cr1.8Ti0.2O3 (CTO) was obtained by a sol–gel method. The thick films were developed on identical ceramic tubes of 4 mm length comprising of two Au-electrodes and printing an eight-layer film prepared by mixing CTO with glass powder and -terpinol as an organic vehicle. X-ray powder diffraction (XRD) patterns showed the formation of a single phase. The scanning electron microscope (SEM) images of the ceramic sensor treated at 850 °C revealed that the grain size was larger than 400 nm for the individual isolated grains on the surface, and the agglomerated dense spheroidal platelets had the size of 1–4 μm in diameter. The AC impedance measurement in ambient air showed that the resistance decreased nearly by two orders of magnitude with an increase in temperature in the range of 400–600 °C for both the powder sample and the thick film, and the activation energy Ea derived from the measurement was found to be 0.35 and 0.36 eV for the powder and the film, respectively. The films were exposed to various concentrations of alcohols (0.4–1.2 ppm of methanol and 1.0–5.0 ppm of ethanol), followed by determination of sensor response, sensitivity and reversibility and reproducibility. The origin of the gas response was attributed to the surface reaction of R-OH (R = methyl and ethyl group) with O(ads) to form adsorbed R-CHO, which was desorbed as a gas at 400 °C after the sensor departing from the gas.  相似文献   

11.
Flexural In2O3 nanowires with high aspect ratios were synthesized via a hydrothermal–annealing route. The as-synthesized In2O3 nanowires had diameters of 30–50 nm and length up to several microns. Various reaction parameters, such as the kind of reagents, the time of hydrothermal treatment, annealing time and annealing temperature, were investigated by a series of control experiments. The as-synthesized In2O3 nanowires showed excellent gas-sensing properties to NO2 in terms of sensor response and selectivity.  相似文献   

12.
The effect of CdO doping on microstructure, conductance and gas-sensing properties of SnO2-based sensors has been presented in this study. Precursor powders with Cd/Sn molar ratios ranging from 0 to 0.5 were prepared by chemical coprecipitation. X-ray diffraction (XRD) analysis indicates that the solid-state reaction in the CdO–SnO2 system occurs and -CdSnO3 with pervoskite structure is formed between 600 and 650°C. CdO doping suppresses SnO2 crystallite growth effectively which has been confirmed by means of XRD, transmission electron microscopy (TEM) and BET method. The 10 mol% Cd-doped SnO2-based sensor shows an excellent ethanol-sensing performance, such as high sensitivity (275 for 100 ppm C2H5OH), rapid response rate (12 s for 90% response time) and high selectivity over CO, H2 and i-C4H10. On the other hand, this sensor has good H2-sensing properties in the absence of ethanol vapor. The sensor operates at 300°C, the sensitivity to 1000 ppm H2 is up to 98, but only 16 and 7 for 1000 ppm CO and i-C4H10, respectively.  相似文献   

13.
Simple method of SnO2 layer modification, using very small quantity of hexamethyldisilazane and rapid thermal annealing in the range 800–1200 °C is proposed. The distribution profile of the dopant elements of C, N, Si in the SnO2/SiO2/Si structure is investigated. Penetration of Si in the whole depth of SnO2 is revealed and formation of SiO2 regions in the SnO2 bulk is assumed. Simultaneously, Sn diffusion in the SiO2 layer is observed. The combination of standard AES and XPS techniques with a hollow cathode discharge method appears to be very useful for detection of traces of dopants in the layers.  相似文献   

14.
Ultrafine SmFe0.7Co0.3O3 powder, prepared by a sol–gel method, shows a single-phase orthogonal perovskite structure. The influence of annealing temperature upon its crystal cell volume, microstructure, electrical and ethanol-sensing properties was investigated in detail. When the annealing temperature increases from 600 to 950 °C, the unit cell volume of the SmFe0.7Co0.3O3 sample reduces, and its average grain size increases. When the annealing temperature increases from 600 to 850 °C, the optimal working temperature and response to ethanol of the SmFe0.7Co0.3O3 sensor increase, and the response–recovery time shortens. But when the annealing temperature further increases from 850 to 950 °C, there are decreases of the optimal working temperature and sensor response, and the response–recovery time is prolonged. The results indicate that, as for sensor response, its optimal annealing temperature is about 850 °C, and the sensor based on SmFe0.7Co0.3O3 annealed at 850 °C shows the highest response S = 80.8 to 300 ppm ethanol gas, and it has the best response–recovery and selectivity characteristics. When the ethanol concentration is as low as 500 ppm, the curve of its optimal response versus concentration is nearly linear. Meanwhile, the influence mechanisms of annealing temperature upon the conductance, the optimal working temperature and sensor response for SmFe0.7Co0.3O3 were studied.  相似文献   

15.
Solid-electrolyte-based electrochemical SOx sensors fabricated with MgO-stabilized zirconia and Li2SO4---CaSO4---SiO2 (4:4:2 in molar ratio) exhibit fairly good sensing characteristics for 2–200 ppm SO2 in air at 600–750 °C, with the e.m.f. responses following the Nernst equation for the two-electron reduction of SO2. The 90% response and 90% recovery times to 20 ppm SO2 are 10 s and 7 min at 650 °C, and 10 s and 3 min at 700 °C, respectively. It is further found that the sensor exhibits excellent selectivity to SOx in the coexistence of CO2 and NOx, and good long-term stability. The sensor is simple in structure, easy to prepare, and quite tough chemically and mechanically. These features should ensure practical use for this SOx sensor.  相似文献   

16.
G.  I.  M.  J.R.   《Sensors and actuators. B, Chemical》2007,120(2):679-686
The gas-sensing properties of SnO2-based thin films designed for ozone detection are discussed in this paper. The influence of film characteristics on sensor performance is analyzed. SnO2 films with thickness 30–200 nm were deposited by spray pyrolysis. The SnO2 films have a response to ozone that is quantitative and rapid and sufficient for use in ozone control and monitoring applications. Sensor performance is compared with similarly prepared sensors fabricated from In2O3- and WO3-based films. The mechanism of the processes controlling the sensor response characteristics is proposed. The data support our conclusion that the reaction with ozone using the SnO2-film sensors is limited by the adsorption/desorption processes.  相似文献   

17.
In the present study nanocrystalline pristine and Pd-doped SnO2 (Pd:SnO2) with various mol% Pd have been synthesized by a modified Pechini citrate route. Transmission electron microscopy and X-ray powder diffraction studies were used to characterize the morphology, crystallinity, and structure of the SnO2 and Pd:SnO2. The response of the pristine SnO2 and Pd:SnO2 was studied towards different reducing gases. The 1.5 mol% Pd doping showed an enhanced response of 75 and 95% towards LPG at as low as 50 and 100 °C, respectively, which were quite large high value as compared with pristine SnO2 (38 and 35% at 50 and 100 °C, respectively). Structural characterization revealed that Pd doping reduced the crystallite size of SnO2 and helps in the formation of distinct spherical nanospheres at a calcinations temperature of 500 °C. Thus the increase in LPG response can be correlated with the spherical morphology, a decrease in the crystallite size (11 nm) due to doping with Pd as compared with the pristine SnO2 (26 nm) and main role of Pd as a catalyst.  相似文献   

18.
A novel micromachined single wall carbon nanotube (SWCNT) reinforced nanocrystalline tin dioxide gas sensor has been developed. The presence of SWCNT in SnO2 matrix was realized by a spin-on sol–gel process. The SWCNT/SnO2 sensor's sensitivity for hydrogen detection has greatly increased by a factor of three, in comparison to that of pure SnO2 sensor. The novel sensor also lowers the working temperature, response time and recovery time. The greatly improved performances are mainly attributed to the effective gas accessing nano passes through SWCNT plus the smaller distance between adjacent gas accessing boundaries formed by the distribution of tiny SWCNTs. Therefore, both the spatial requirement (D ≤ 2L, D is the distance between adjacent gas accessing boundaries and L is the space charge layer thickness) and surficial requirement (adequate gas activation area) are met and the maximum inherent sensitivity of SnO2 is achieved.  相似文献   

19.
Zinc oxide (ZnO) is a well-known semiconducting multifunctional material wherein properties right from the morphology to gas sensitivity can be tailor-made by doping or surface modification. Aluminum (Al)-incorporated porous zinc oxide (Al:ZnO) exhibits good response towards NO2 at low-operating temperature. The NO2 gas concentration as low as 20 ppm exhibits S = 17% for 5 wt.% Al-incorporated ZnO. The NO2 response increases with operating temperature and concentration and reaches to its maximum at 300 °C without any interference from other gases such as SO3, HCl, LPG and alcohol. Physico-chemical characterization likes differential thermogravimetric analysis (TG-DTA) electron paramagnetic resonance (EPR) and diffused reflectance spectroscopy (DRS) have been used to understand the sensing behavior for pure and Al-incorporated ZnO. The TG-DTA depicts formation of ZnO phase at 287 °C. The EPR study reveals distinct variation for O (g = 2.003) and Zn interstitial (g = 1.98) defect sites in pure and Al:ZnO. The DRS studies elucidate signature of adsorbed NOx species in aluminium-incorporated zinc oxide indicating its tendency to adsorb these species even at low temperatures. This paper is an attempt to correlate the gas sensing behavior with the physico-chemical studies such as EPR and DRS.  相似文献   

20.
J.  H.  M.  W. J.  E.   《Sensors and actuators. B, Chemical》2000,70(1-3):196-202
We present an approach to optimize the specific response to gases by using specially prepared nanosized platinum on highly dense sputtered polycrystalline SnO2. Structural and morphological analyses of the SnO2 and platinum thin films were performed. Gas measurements were carried out with single chip thin-film SnO2 sensor arrays on silicon substrates. Pt nanoclusters covering the sensitive layer significantly affect the O3, CO and NO2 sensitivities and the corresponding dynamic response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号