The enzyme 4-oxalocrotonate tautomerase (4-OT) is part of a catabolic pathway for aromatic hydrocarbons in Pseudomonas putida mt-2, where it catalyzes the conversion of 2-hydroxy-2,4-hexadienedioate(1) to 2-oxo-3-hexenedioate(2). 4-OT is a member of the tautomerase superfamily, a group of homologous proteins that are characterized by a β-α-β structural fold and a catalytic amino-terminal proline. In the mechanism of 4-OT, Pro1 is a general base that abstracts the 2-hydroxyl proton of 1 for delivery to the C-5 position to yield 2. Here, 4-OT was explored for nucleophilic catalysis based on the mechanistic reasoning that its Pro1 residue has the correct protonation state (pK(a) ~6.4) to be able to act as a nucleophile at pH 7.3. By using inhibition studies and mass spectrometry experiments it was first demonstrated that 4-OT can use Pro1 as a nucleophile to form an imine/enamine with various aldehyde and ketone compounds. The chemical potential of the smallest enamine (generated from acetaldehyde) was then explored for further reactions by using a small set of selected electrophiles. This systematic screening approach led to the discovery of a new promiscuous activity in wild-type 4-OT: the enzyme catalyzes the aldol condensation of acetaldehyde with benzaldehyde to form cinnamaldehyde. This low-level aldolase activity can be improved 16-fold with a single point mutation (L8R) in 4-OT's active site. The proposed mechanism of the reaction mimicks that used by natural class-I aldolases and designed catalytic aldolase antibodies. An important difference, however, is that these natural and designed aldolases use the primary amine of a lysine residue to form enamines with carbonyl substrates, whereas 4-OT uses the secondary amine of an active-site proline as the nucleophile catalyst. Further systematic screening of 4-OT and related proline-based biocatalysts might prove to be a useful approach to discover new promiscuous carbonyl transformation activities that could be exploited to develop new biocatalysts for carbon-carbon bond formation. 相似文献
Candida antarctica lipase B (CALB) is a promiscuous serine hydrolase that, besides its native function, catalyzes different side reactions, such as direct epoxidation. A single-point mutant of CALB demonstrated a direct epoxidation reaction mechanism for the epoxidation of alpha,beta-unsaturated aldehydes by hydrogen peroxide in aqueous and organic solution. Mutation of the catalytically active Ser105 to alanine made the previously assumed indirect epoxidation reaction mechanism impossible. Gibbs free energies, activation parameters, and substrate selectivities were determined both computationally and experimentally. The energetics and mechanism for the direct epoxidation in CALB Ser105Ala were investigated by density functional theory calculations, and it was demonstrated that the reaction proceeds through a two step-mechanism with formation of an oxyanionic intermediate. The active-site residue His224 functions as a general acid-base catalyst with support from Asp187. Oxyanion stabilization is facilitated by two hydrogen bonds from Thr40. 相似文献
The non-hydrolytic ring opening of 1,2-epoxides in the presence of limonene epoxide hydrolases (LEHs) and different nucleophiles has been investigated. Lyophilized, wild-type LEHs were tested in selected water-saturated organic solvents in the presence of cyclohexene oxide as substrate and different alcohols, thiols and primary amines as nucleophiles. Although the LEHs retained an appreciable catalytic activity under different reaction conditions, formation of the desired 1,2-substituted cyclohexanols was not observed. Alternatively, LEH variants incapable of performing the hydrolytic reaction were generated by site-directed mutagenesis and tested in aqueous media in the presence of different water-soluble nucleophiles and cyclohexene oxide. Under defined reaction conditions, an acceleration of up to about threefold of the spontaneous reaction rate was observed in the presence of sodium azide and potassium thiocyanate as nucleophiles. 相似文献
Serendipitous switch: While exploring cis-nitrostyrene as a potential electrophile in Michael-type addition reactions catalysed by the enzyme 4-oxalocrotonate tautomerase (4-OT), it was unexpectedly found that 4-OT catalyses the isomerisation of cis-nitrostyrene to trans-nitrostyrene (k(cat) /K(m) = 1.9×10(3) M(-1) s(-1) ). 相似文献
The effect of water activity on enzyme-catalyzed enantioselective transesterification was studied by using a solid/gas reactor. The experimental results were compared with predictions from molecular modelling. The system studied was the esterification of pentan-2-ol with methylpropanoate as acyl donor and lipase B from Candida antarctica as catalyst. The data showed a pronounced water-activity effect on both reaction rate and enantioselectivity. The enantioselectivity increased from 100, at water activity close to zero, to a maximum of 320, at a water activity of 0.2. Molecular modelling revealed how a water molecule could bind in the active site and obstruct the binding of the slowly reacting enantiomer. Measurements of enantioselectivity at different water-activity values and temperatures showed that the water molecule had a high affinity for the stereospecificity pocket of the active site with a binding energy of 9 kJ mol-1, and that it lost all its degrees of rotation, corresponding to an entropic energy of 37 J mol-1 K-1. 相似文献
Random mutagenesis targeted at hotspots of noncatalytic active‐site residues of potato epoxide hydrolase StEH1 combined with an enzyme‐activity screen allowed the isolation of enzyme variants displaying altered enantiopreference in the catalyzed hydrolysis of (2,3‐epoxypropyl)benzene. The wild‐type enzyme favored the S enantiomer with a ratio of 2.5:1, whereas the variant displaying the most radical functional changes showed a 15:1 preference for the R enantiomer. This mutant had accumulated four substitutions distributed over two out of four mutated hotspots: W106L, L109Y, V141K, and I151V. The underlying causes of the enantioselectivity were a decreased catalytic efficiency in the catalyzed hydrolysis of the S enantiomer combined with retained activity with the R enantiomer. The results demonstrate the feasibility of molding the stereoselectivity of this biocatalytically relevant enzyme.相似文献
Studies of the interactions of dienelactone hydrolase (DLH) and its mutants with both E and Z dienelactone substrates show that the enzyme exhibits two different conformational responses specific for hydrolysis of each of its substrate isomers. DLH facilitates hydrolysis of the Z dienelactone through an unusual charge-relay system that is initiated by interaction between the substrate carboxylate and an enzyme arginine residue that activates an otherwise non-nucleophilic cysteine. The E dienelactone does not display this substrate-arginine binding interaction, but instead induces an alternate conformational response that promotes hydrolysis. Furthermore, the substitution of cysteine 123 for serine (C123S) in DLH, instead of inactivating the enzyme as is typical for this active-site mutation, changes the catalysis from substrate hydrolysis to isomerisation. This is due to the deacylation of the acyl-enzyme intermediates being much slower, thereby increasing their lifetimes and allowing for their interconversion through isomerisation, followed by relactonisation. 相似文献
Chymopapain, a cysteine proteinase isolated from the latex of the unripe fruits of Carica papaya, displays a promiscuous activity to catalyze the direct asymmetric aldol reactions of aromatic and heteroaromatic aldehydes with cyclic and acyclic ketones in acetonitrile in the presence of a phosphate buffer. The excellent enantioselectivities of up to 96% ee and high diastereoselectivities of up to >99:1 (anti/syn) were achieved. The novel catalytic promiscuity of chymopapain widens the applicability of this biocatalyst in organic synthesis. 相似文献
Double play: The enzyme 4-oxalocrotonate tautomerase (4-OT) catalyzes not only the initial cross-coupling of acetaldehyde and benzaldehyde to yield 3-hydroxy-3-phenylpropanal, but also the subsequent dehydration of this aldol compound to yield cinnamaldehyde as the final product. Mechanism-inspired engineering provided an active site mutant (F50A) with strongly enhanced aldol condensation activity. 相似文献
Thioglycoligases are engineered enzymes for the synthesis of thioglycosides that are derived from retaining glycosidases by replacing the acid/base catalyst. The optimal choice of substitution for the acid/base mutant is currently unknown, so to investigate this question a complete acid/base library of the model glycosidase Bacillus circulans xylanase (Bcx) was generated by using site‐saturation mutagenesis. A novel screening approach combining active site titration with semiquantitative product analysis by thin layer chromatography was established and used to evaluate specific activities of each mutant enzyme within crude cell lysates. The six most active Bcx variants were analyzed in more detail, a pH optimum of 8.5 was established and the identity of reaction products was confirmed. Optimal choices for substitution were small, preferably polar amino acids such as threonine, cysteine, and serine. We discuss the resultant data in the context of previously published studies on thioglycoligases.相似文献
Michael-type additions of various thiols and alpha,beta-unsaturated carbonyl compounds were performed in organic solvent catalyzed by wild-type and a rationally redesigned mutant of Candida antarctica lipase B. The mutant lacks the nucleophilic serine 105 in the active-site; this results in a changed catalytic mechanism of the enzyme. The possibility of utilizing this mutant for Michael-type additions was initially explored by quantum-chemical calculations on the reaction between acrolein and methanethiol in a model system. The model system was constructed on the basis of docking and molecular-dynamics simulations and was designed to simulate the catalytic properties of the active site. The catalytic system was explored experimentally with a range of different substrates. The kca values were found to be in the range of 10(-3) to 4 min(-1), similar to the values obtained with aldolase antibodies. The enzyme proficiency was 10(7). Furthermore, the Michael-type reactions followed saturation kinetics and were confirmed to take place in the enzyme active site. 相似文献
A novel enzymatic, promiscuous protocol for Candida antarctica lipase B (CAL‐B)‐catalyzed carbon‐sulfur bond addition is described. Some control experiments have been designed to demonstrate the catalytic specificity of CAL‐B. Selectivity between anti‐Markovnikov addition and Markovnikov addition was achieved in different organic media. A series of thioether‐containing ester functional groups was synthesized under the catalysis of CAL‐B at 50 °C. All the products were characterized by spectroscopic methods (IR, NMR, ESI‐MS). 相似文献
A new glycosyltransferase (UGT71E5) from Carthamus tinctorius exhibited a robust promiscuity towards 30 structurally diverse drug‐like aromatic amine scaffolds, making it the first reported glycosyltransferase capable of catalyzing N ‐glycosylation with multiple diverse nitrogen‐heterocyclic aromatic compounds. The catalytic promiscuity and reversibility of UGT71E5 was exploited to generate the rare N ‐glycoside from the abundant O ‐glycoside with high efficiency. These findings demonstrate the significant potential of UGT71E5 in the enzymatic synthesis of diverse bioactive N ‐glycosides.
Mixed carbonates of 7‐hydroxy‐4‐methylcoumarin were shown to be a new class of probe for fluorogenic assays. They are promising substrates for fingerprinting enzyme hydrolytic activity, and proved particularly useful because of the low level of nonspecific degradation and ease of synthesis. They are highly relevant for screening lipase and esterase libraries. These advantages make umbelliferyl carbonates highly suitable substrates for high‐throughput screening. Moreover, we report the use of chiral fluorogenic carbonates as enantiopreference probes. 相似文献