首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The modellization of mechanical systems with non‐linearities of impact type leads to discontinuities in the velocity. In this paper, we study some numerical methods adapted to the occurrence of such discontinuities from a single‐degree‐of‐freedom vibro‐impact system. Theoretical results of consistency are given for numerical methods valid for smooth ordinary differential equations, with several kinds of procedures for approximating impact times. The algorithms are applied to classical Newmark and Runge–Kutta schemes, and the numerical behaviour is investigated for two categories of periodic response, either with finite or infinite number of impacts per cycle. These numerical methods are compared to a scheme without explicit computation of impact times. We show that high orders of convergence can be obtained with appropriate schemes, and we discuss the time of computation needed in each case. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
In this work, we propose Runge–Kutta time integration schemes for the incompressible Navier–Stokes equations with two salient properties. First, velocity and pressure computations are segregated at the time integration level, without the need to perform additional fractional step techniques that spoil high orders of accuracy. Second, the proposed methods keep the same order of accuracy for both velocities and pressures. The segregated Runge–Kutta methods are motivated as an implicit–explicit Runge–Kutta time integration of the projected Navier–Stokes system onto the discrete divergence‐free space, and its re‐statement in a velocity–pressure setting using a discrete pressure Poisson equation. We have analysed the preservation of the discrete divergence constraint for segregated Runge–Kutta methods and their relation (in their fully explicit version) with existing half‐explicit methods. We have performed a detailed numerical experimentation for a wide set of schemes (from first to third order), including implicit and IMEX integration of viscous and convective terms, for incompressible laminar and turbulent flows. Further, segregated Runge–Kutta schemes with adaptive time stepping are proposed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Non‐overlapping domain decomposition techniques are used to solve the finite element equations and to couple them with a boundary element method. A suitable approach dealing with finite element nodes common to more than two subdomains, the so‐called cross‐points, endows the method with the following advantages. It yields a robust and efficient procedure to solve the equations resulting from the discretization process. Only small size finite element linear systems and a dense linear system related to a simple boundary integral equation are solved at each iteration and each of them can be solved in a stable way. We also show how to choose the parameter defining the augmented local matrices in order to improve the convergence. Several numerical simulations in 2D and 3D validating the treatment of the cross‐points and illustrating the strategy to accelerate the iterative procedure are presented. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
5.
Multi‐scale problems are often solved by decomposing the problem domain into multiple subdomains, solving them independently using different levels of spatial and temporal refinement, and coupling the subdomain solutions back to obtain the global solution. Most commonly, finite elements are used for spatial discretization, and finite difference time stepping is used for time integration. Given a finite element mesh for the global problem domain, the number of possible decompositions into subdomains and the possible choices for associated time steps is exponentially large, and the computational costs associated with different decompositions can vary by orders of magnitude. The problem of finding an optimal decomposition and the associated time discretization that minimizes computational costs while maintaining accuracy is nontrivial. Existing mesh partitioning tools, such as METIS, overlook the constraints posed by multi‐scale methods and lead to suboptimal partitions with a high performance penalty. We present a multi‐level mesh partitioning approach that exploits domain‐specific knowledge of multi‐scale methods to produce nearly optimal mesh partitions and associated time steps automatically. Results show that for multi‐scale problems, our approach produces decompositions that outperform those produced by state‐of‐the‐art partitioners like METIS and even those that are manually constructed by domain experts. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
We propose the use of reduced‐order models to accelerate the solution of systems of equations using iterative solvers in time stepping schemes for large‐scale numerical simulation. The acceleration is achieved by determining an improved initial guess for the iterative process based on information in the solution vectors from previous time steps. The algorithm basically consists of two projection steps: (1) projecting the governing equations onto a subspace spanned by a low number of global empirical basis functions extracted from previous time step solutions, and (2) solving the governing equations in this reduced space and projecting the solution back on the original, high dimensional one. We applied the algorithm to numerical models for simulation of two‐phase flow through heterogeneous porous media. In particular we considered implicit‐pressure explicit‐saturation (IMPES) schemes and investigated the scope to accelerate the iterative solution of the pressure equation, which is by far the most time‐consuming part of any IMPES scheme. We achieved a substantial reduction in the number of iterations and an associated acceleration of the solution. Our largest test problem involved 93 500 variables, in which case we obtained a maximum reduction in computing time of 67%. The method is particularly attractive for problems with time‐varying parameters or source terms. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
We present two accurate and efficient numerical schemes for a phase field dendritic crystal growth model, which is derived from the variation of a free‐energy functional, consisting of a temperature dependent bulk potential and a conformational entropy with a gradient‐dependent anisotropic coefficient. We introduce a novel Invariant Energy Quadratization approach to transform the free‐energy functional into a quadratic form by introducing new variables to substitute the nonlinear transformations. Based on the reformulated equivalent governing system, we develop a first and a second order semi‐discretized scheme in time for the system, in which all nonlinear terms are treated semi‐explicitly. The resulting semi‐discretized equations consist of a linear elliptic equation system at each time step, where the coefficient matrix operator is positive definite and thus, the semi‐discrete system can be solved efficiently. We further prove that the proposed schemes are unconditionally energy stable. Convergence test together with 2D and 3D numerical simulations for dendritic crystal growth are presented after the semi‐discrete schemes are fully discretized in space using the finite difference method to demonstrate the stability and the accuracy of the proposed schemes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Summary The one-dimensional diffusion equation for a region with one fixed boundary and one unknown moving boundary is transformed to a non-linear equation on a fixed region by using the moving boundary position as the time variable. The boundary velocity becomes a second dependent variable, with dependence only on the new time variable. An implicit finite difference scheme, marching in time, is applied to a problem with known analytic solution to demonstrate the computing speed and accuracy of this approach, and also to a problem solved previously by variable time step methods. This transformation reduces any parabolic or elliptic system of equations on a domain with moving boundary, or with unknown free surface in two space variables, to a non-linear fixed domain system which has advantages for computation.  相似文献   

9.
The basic idea of meshless finite difference methods is to approximate a differential operator by means of directional difference quotients and their combinations, and then to analyze the stability and convergence of the solution using a discrete energy estimation. The practical computational steps of the meshless finite difference methods include: 1. If the equation contains the time factor then nodes are inserted for each time segment to generate several time layers, each of which corresponds to a spatial domain; 2. A set of points is scattered for each spatial domain and a subset with each inner point as its center is chosen within the point set so that the directional difference quotients of first or second orders are established on this subset in order to construct a finite difference scheme with respect to each point. In this paper the construction of meshless finite difference schemes for elliptic, parabolic and hyperbolic equations is considered. The schemes are analyzed for stability and convergence. Moreover practical issued with regards to point scattering and connecting are considered and the issues of adaptation and parallelism are also discussed.  相似文献   

10.
This paper presents an examination of moving‐boundary temperature control problems. With a moving‐boundary problem, a finite‐element mesh is generated at each time step to express the position of the boundary. On the other hand, if an overlapped domain, that is, comprising foreground and background meshes, is prepared, the moving boundary problem can be solved without mesh generation at each time step by using the fictitious domain method. In this study, boundary temperature control problems with a moving boundary are formulated using the finite element, the adjoint variable, and the fictitious domain methods, and several numerical experiments are carried out. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
传统动力时程直接积分法多采用低阶数值格式,需要选择非常小的时间步距才能获得满足精度要求的动力分析结果.该文将结构动力时程分析的积分求微法推广至多自由度情形,发展了一种具有较高计算效率的多自由度阻尼体系的动力时程高阶分析方法.将相邻的ρ个时步组成一个待求解时段,基于多自由度体系动力响应积分解,以精细积分法结合秦九韶算法计...  相似文献   

12.
This work presents a level set framework to solve the compliance topology optimization problem considering design‐dependent pressure loads. One of the major technical difficulties related to this class of problem is the adequate association between the moving boundary and the pressure acting on it. This difficulty is easily overcome by the level set method that allows for a clear tracking of the boundary along the optimization process. In the present approach, a reaction‐diffusion equation substitutes the classical Hamilton‐Jacobi equation to control the level set evolution. This choice has the advantages of allowing the nucleation of holes inside the domain and the elimination of the undesirable reinitialization steps. Moreover, the proposed algorithm allows merging pressurized (wet) boundaries with traction‐free boundaries during level set movements. This last property, allied to the simplicity of the level set representation and successful combination with the reaction‐diffusion based evolution applied to a design‐dependent pressure load problem, represents the main contribution of this paper. Numerical examples provide successful results, many of which comparable with others found in the literature and solved with different techniques.  相似文献   

13.
A high‐order time‐domain approach for wave propagation in bounded and unbounded domains is proposed. It is based on the scaled boundary FEM, which excels in modelling unbounded domains and singularities. The dynamic stiffness matrices of bounded and unbounded domains are expressed as continued‐fraction expansions, which leads to accurate results with only about three terms per wavelength. An improved continued‐fraction approach for bounded domains is proposed, which yields numerically more robust time‐domain formulations. The coefficient matrices of the corresponding continued‐fraction expansion are determined recursively. The resulting solution is suitable for systems with many DOFs as it converges over the whole frequency range, even for high orders of expansion. A scheme for coupling the proposed improved high‐order time‐domain formulation for bounded domains with a high‐order transmitting boundary suggested previously is also proposed. In the time‐domain, the coupled model corresponds to equations of motion with symmetric, banded and frequency‐independent coefficient matrices, which can be solved efficiently using standard time‐integration schemes. Numerical examples for modal and time‐domain analysis are presented to demonstrate the increased robustness, efficiency and accuracy of the proposed method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
We consider the performance of sparse linear solvers for problems that arise from thermo‐mechanical applications. Such problems have been solved using sparse direct schemes that enable robust solution at the expense of memory requirements that grow non‐linearly with the dimension of the coefficient matrix. In this paper, we consider a class of preconditioned iterative solvers as a limited‐memory alternative to direct solution schemes. However, such preconditioned iterative solvers typically exhibit complex trade‐offs between reliability and performance. We therefore characterize such trade‐offs for systems from thermo‐mechanical problems by considering several preconditioning schemes including multilevel methods and those based on sparse approximate inversion and incomplete matrix factorization. We provide an analysis of computational costs and memory requirements for model thermo‐mechanical problems, indicating that certain incomplete factorization schemes can achieve good performance. We also provide empirical evaluations that corroborate our analysis and indicate the relative effectiveness of different solution schemes. Our results indicate that our drop‐threshold incomplete Cholesky preconditioning is more robust, efficient and flexible than other popular preconditioning schemes. In addition, we propose preconditioner reuse to amortize preconditioner construction cost over a sequence of linear systems that arise from non‐linear solutions in a plastic regime. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
A non‐linear moving boundary diffusion problem is proposed as a simple model for the heat transfer during combustion of wood cylinders. Such a problem is solved here by applying the generalized integral transform technique. A new filtering strategy, denoted as local‐instantaneous filter, is used in order to accelerate the convergence of the series‐solution obtained with the present hybrid numerical–analytical technique. We show that the use of such filtering approach reduces the stiffness of the system of ordinary differential equations, resultant from the integral transformation of the original problem. Hence, subroutines based on simpler and faster methods can be used for the solution of such systems. Results are presented in the paper for the combustion of cylinders of different sizes and involving different initial moisture contents and densities. The effects on the solution of different models available in the literature for the evaluation of thermal conductivity and specific heat are also addressed on the paper. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
The behaviour of high‐order time stepping methods combined with mesh‐free methods is studied for the transient convection–diffusion equation. Particle methods, such as the element‐free Galerkin (EFG) method, allow to easily increase the order of consistency and, thus, to formulate high‐order schemes in space and time. Moreover, second derivatives of the EFG shape functions can be constructed with a low extra cost and are well defined, even for linear interpolation. Thus, consistent stabilization schemes can be considered without loss in the convergence rates. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
Real‐time applications based on the principle of Dynamic Substructuring require integration methods that can deal with constraints without exceeding an a priori fixed number of steps. For these applications, first we introduce novel partitioned algorithms able to solve DAEs arising from transient structural dynamics. In particular, the spatial domain is partitioned into a set of disconnected subdomains and continuity conditions of acceleration at the interface are modeled using a dual Schur formulation. Interface equations along with subdomain equations lead to a system of DAEs for which both staggered and parallel procedures are developed. Moreover under the framework of projection methods, also a parallel partitioned method is conceived. The proposed partitioned algorithms enable a Rosenbrock‐based linearly implicit LSRT2 method, to be strongly coupled with different time steps in each subdomain. Thus, user‐defined algorithmic damping and subcycling strategies are allowed. Secondly, the paper presents the convergence analysis of the novel schemes for linear single‐Degree‐of‐Freedom (DoF) systems. The algorithms are generally A‐stable and preserve the accuracy order as the original monolithic method. Successively, these results are validated via simulations on single‐ and three‐DoFs systems. Finally, the insight gained from previous analyses is confirmed by means of numerical experiments on a coupled spring–pendulum system. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Probabilistic theories aim at describing the properties of systems subjected to random excitations by means of statistical characteristics such as the probability density function ψ (pdf). The time evolution of the pdf of the response of a randomly excited deterministic system is commonly described with the transient Fokker–Planck–Kolmogorov (FPK) equation. The FPK equation is a conservation equation of a hypothetical or abstract fluid, which models the transport of probability. This paper presents a generalized formalism for the resolution of the transient FPK equation by using the well‐known mesh‐free Lagrangian method, smoothed particle hydrodynamics). Numerical implementation shows notable advantages of this method in an unbounded state space: (1) the conservation of total probability in the state space is explicitly written; (2) no artifact is required to manage far‐field boundary conditions; (3) the positivity of the pdf is ensured; and (4) the extension to higher dimensions is straightforward. Furthermore, thanks to the moving particles, this method is adapted for a large kind of initial conditions, even slightly dispersed distributions. The FPK equation is solved without any a priori knowledge of the stationary distribution, just a precise representation of the initial distribution is required.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Abstract

Parameter identification of discrete‐data systems with unmeasured disturbances is investigated. The systems of both known and unknown orders are considered. For a system of unknown order, a first‐order linear moving model is used for identifying the system. The parameter estimation methods are least squares estimation and generalized least squares estimation (or Markov estimation). A comparison of the results via these two estimation methods is presented.  相似文献   

20.
Engineers are often more concerned with the computation of statistical moments (or mathematical expectations) of the response of stochastically driven dynamical systems than with the determination of path‐wise response histories. With this in perspective, weak stochastic solutions of dynamical systems, modelled as n degrees‐of‐freedom (DOF) mechanical oscillators and driven by additive and/or multiplicative white noise (or, filtered white noise) processes, are considered in this study. While weak stochastic solutions are simpler and quicker to compute than strong (sample path‐wise) solutions, it must be emphasized that sample realizations of weak solutions have no path‐wise similarity with strong solutions. However, the statistical moment of any continuous and sufficiently differentiable deterministic function of the weak stochastic response is ‘close’ to that of the true response (if it exists) within a certain order of a given time step size. Computation of weak response therefore assumes great significance in the context of simulations of stochastically driven dynamical systems (oscillators) of engineering interest. To efficiently generate such weak responses, a novel class of weak stochastic Newmark methods (WSNMs), based on implicit Ito–Taylor expansions of displacement and velocity fields, is proposed. The resulting multiple stochastic integrals (MSIs) in these expansions are replaced by a set of random variables with considerably simpler and discrete probability densities. In fact, yet another simplifying feature of the present strategy is that there is no need to model and compute some of the higher‐level MSIs. Estimates of error orders of these methods in terms of a given time step size are derived and a proof of global convergence provided. Numerical illustrations are provided and compared with exact solutions whenever available to demonstrate the accuracy, simplicity and higher computational speed of WSNMs vis‐à‐vis a few other popularly used stochastic integration schemes as well as the path‐wise versions of the stochastic Newmark scheme. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号