首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
两河口水电站大坝为295m高心墙堆石坝,土料来源分散,均一性差,颗粒偏细,需掺砾改性。心墙填筑质量直接关系到整个坝体的安全运行,针对设计提出填筑质量采用全料压实度和细料压实度双控等多项质量控制参数,围绕土料的使用及填筑质量控制标准的确定,通过系列试验研究,提出了掺砾心墙砾石土随掺砾量变化的击实特性及细料压实度范围值,为设计确定控制参数提供依据。  相似文献   

2.
以某水电站开展的不同掺砾量心墙土料的物理力学性能研究为背景,深入探讨心墙土料在不同掺砾量的各项性能及相关性研究;随着掺砾量的增加,最大干密度增加,最优含水率降低,渗透系数增加(防渗性能降低),破坏坡降降低、压缩模量增大,力学性能提高。骨架形成点是心墙土料物理力学性能变化的显著判别点,可采取博弈原理对最佳的心墙土料进行判别确定,选取最佳掺砾量的心墙土料。  相似文献   

3.
为考察西南地区某黏土心墙坝在不同心墙掺砾水平下心墙的工作性态与安全情况,进而确定心墙坝掺砾施工方案,采用三维有限元方法,在不同的掺砾量水平之下,充分考虑掺砾量的增加对心墙渗透性与变形强度的影响,采用双线法计算各掺砾方案下的湿化变形,研究了大坝完建期及蓄水运行时心墙水平与竖向位移的变化规律,同时采用拱效应系数分析心墙拱效应的变化情况。研究结果表明:当掺砾量控制在50%以下时,伴随掺砾量增加,心墙的沉降变形减少,顺河流向变形减少,使心墙拱效应得到改善;当掺砾量大于50%时,掺砾对心墙的沉降变形与拱效应的抑制作用减弱,同时心墙顺河流向变形量增加。鉴于对于黏土心墙工作性态的综合考虑,建议相应工程中心墙料掺砾量宜小于50%。  相似文献   

4.
狮子坪水电站砾石土心墙堆石坝最大坝高136 m,覆盖层最深达102 m,其中覆盖层②为粉质壤土与粉细砂互层,覆盖层④-1、④-3为含碎砾石砂层、粉质壤土层,强度指标较低。通过对坝体进行抗滑稳定分析,调整了坝体结构设计,提出了相应的工程处理措施。  相似文献   

5.
长河坝水电站砾石土心墙堆石坝最大坝高240 m,坝基覆盖层最深约53 m,工程场地地震基本烈度为Ⅷ度。针对大坝"坝高高、地震烈度高、工程等别高及坝基覆盖层深厚"的特点和难点,进行了大量的专门研究工作,在坝体结构设计、坝基处理设计、筑坝材料设计及抗震设计中采取了一系列有针对性的措施,保证了大坝安全可靠。  相似文献   

6.
采用"平铺立采"与"搅拌机掺和"两种掺和工艺,对粘土料和掺入料进行掺和,就其掺和成果进行系统分析,研究对比哪种掺和工艺更适合双江口水电站建设.试验表明:"平铺立采"的掺和工艺是可行的,建议将"平铺立采"作为施工期的主要掺和方式以供选择;"搅拌机掺和"制备防渗掺和基本可行,与"平铺立采"比较,采用"搅拌机掺和"离散性要大...  相似文献   

7.
瀑布沟水电站砾石土心墙堆石坝设计   总被引:1,自引:0,他引:1  
瀑布沟水电站大坝,根据坝址区地形地质条件,采用砾石土直心墙堆石坝,最大坝高186 m,坝基覆盖层最大深度为77.9 m,具有"坝高、基础覆盖层深厚、防渗土料复杂"等特点.经大量的设计研究工作,选择的坝线和采取的坝体结构、基础防渗处理措施及采用的筑坝材料等,较好地适应了这些特点,保证了大坝安全可靠运行.  相似文献   

8.
以云南省某砾石土心墙堆石坝为例,阐述了基于GeoStudio的土石坝平面有限元应力应变分析,分别对砾石土心墙坝的拱效应、水力劈裂、竣工期及蓄水期的应力变化及各向变形进行深入分析研究。通过数值分析比对高坝分期加载及一次加载对大坝变形的影响,为工程设计提供可靠的数据支持。  相似文献   

9.
土石坝是历史最为悠久的一种坝型,也是应用最为广泛和发展最快的一种坝型。近年来我国水利水电工程发展迅猛,其中应用最多的就是土石坝。土石坝中接触性黏土通常用于与坝肩接触部位及与心墙混凝土构件接触部位,作为协调软、硬介质不同变形的“缓冲体”,主要起到适应坝体变形的作用。砾石土心墙堆石坝接触性黏土施工技术成功应用于两河口水电站,并取得了良好的效果,积累丰富经验,为今后类似高土石坝施工提供借鉴。  相似文献   

10.
长河坝水电站砾石土心墙堆石坝最大坝高240 m,坝基为深厚覆盖层,大坝抗震设防烈度为Ⅸ度。众所周知:高地震烈度区深厚覆盖层上修建高土石坝的抗震安全是工程的关键技术问题之一。为解决长河坝水电站大坝抗震设计难题,对强震区深厚覆盖层上修建高土石坝抗震设计关键技术问题开展了大量深入的研究。介绍了长河坝水电站大坝-坝基体系动力反应数值分析和离心机振动台模型试验等研究成果及所采取的抗震措施,可为类似高土石坝工程的抗震设计提供借鉴和参考。  相似文献   

11.
为了探究掺砾心墙土料的动力特性,对其分别进行静力和动力的三轴试验,研究了不同固结比、不同掺砾比例、不同循环应力比对掺砾土动强度特性的影响。试验结果表明:动强度随固结应力比的增大先升高再降低,增大掺砾比例在一定程度上可以提高动强度,随着循环应力比增大动应变随振次增大速率变大且转折点较早出现。更多还原  相似文献   

12.
天然防渗土料一般无法满足200m级以上超高心墙堆石坝强度和变形的要求,在超高心墙堆石坝建设时通常采用掺砾对天然防渗土料进行改性,以提高心墙料的强度和变形特性。在高地震烈度区,高心墙堆石坝的抗震安全性是重要问题,有效应力法是全面评价高坝抗震安全性的一种重要方法,而目前尚没有振动孔压模型可直接用于高坝掺砾心墙料的计算。根据研究揭示的掺砾土料振动孔压增长的增长规律和材料动力试验,提出一个超高心墙堆石坝掺砾心墙料振动孔压模型,模型能真实反应材料动力特性,而且参数确定方便,计算效率高。将模型应用于长河坝心墙堆石坝,得到了大坝地震过程中振动孔隙水压力和超孔压比的分布规律,为类似高土石坝工程建设提供了参考。  相似文献   

13.
瀑布沟砾石土心墙堆石坝施工期监测分析   总被引:1,自引:1,他引:1  
以瀑布沟水电站砾石土心墙堆石坝施工期变形、应力监测资料为基础,对其主要监测断面的变形特征和应力分布进行了探讨.分析表明,心墙和堆石区最大沉降均位于1/3坝高上下;拱效应最强烈的部位也在1/3坝高处,与心墙坝壳沉降差最大的位置一致;孔隙水压力主要与土料含水量和施工进度有关.  相似文献   

14.
针对长河坝水电站砾石土心墙堆石坝建基面覆盖层深厚、坝体填筑量大、施工布置难度大等工程特性,总结分析了长河坝水电站坝体填筑强度及其影响因素。实践证明,做好填筑料源科学规划、施工道路合理布置、机械设备配备充足、现场施工组织管理得当,可满足大规模、高强度坝体填筑施工。  相似文献   

15.
砾石土心墙堆石坝是采用砾石土料为防渗料的土石坝,因筑坝材料就地取材成本低廉而被广泛应用.通过瀑布沟大坝施工技术的归纳总结,阐述了砾石土心墙堆石坝的施工方法、步骤,为今后砾石土心墙堆石坝施工积累了经验,可资借鉴.  相似文献   

16.
为保证土石坝在自重、各种情况的孔隙压力和外荷载的作用下,具有足够的稳定性,采用了瑞典圆弧法和简化毕肖普法,并运用水科院土石坝稳定计算程序《STABI》进行了粘土心墙堆石坝坝体稳定计算,在地震工况下采用了拟静力法进行坝坡稳定计算,计算结果,在正常蓄水位遇8度地震情况下,除上游坝坡为1:1.85时坝局部不稳定外,其他工况下坝体稳定。  相似文献   

17.
瀑布沟砾石士心墙堆石坝具有“大坝高、基础覆盖层深厚、抗震设计烈度高、水位消落大、水库库容大”等特点,大坝抗震设计是本工程的关键技术问题之一。本文详细论述了瀑布沟水电站砾石土心墙堆石坝抗震设计的情况。  相似文献   

18.
糯扎渡水电站掺砾粘土心墙堆石坝质量控制关键技术   总被引:1,自引:0,他引:1  
马洪琪 《水力发电》2012,38(9):12-15
掺砾粘土心墙防渗土料的性能及适应性、相应的掺砾及填筑施工工艺、压实质量控制标准、质量监控技术等是糯扎渡水电站心墙堆石坝工程建设面临的关键技术问题。通过采用在天然土料中掺35%的人工级配碎石,将压实度作为掺砾粘土心墙压实质量的设计控制指标、填筑含水率作为施工过程中的控制指标,采用对现场取试坑中细料开展三点击实试验作为压实度快速检测的方法,研制了600 mm直径的超大型电动击实仪进行全级配料压实度复核,研发建设了具有实时、在线、自动、高精度等特点的施工过程质量GPS监控系统,保证了工程优质并长期安全运行。  相似文献   

19.
刘培  吴静  庞彬 《人民长江》2012,43(4):43-45
在瀑布沟水电站大坝工程心墙填筑过程中,遭遇了施工道路难以布置、雨季填筑强度低、供料压力大和施工协调难度大等实际困难。针对影响填筑进度的主要因素,提出了加快施工进展的具体措施。创新性地采用了自重25 t的振动凸块碾,使大坝的最高月填筑强度创造了国内土石坝填筑强度的新纪录。介绍了具体的施工方法和详细的分月填筑工程量和心墙上升高度,并对填筑过程进行了分析。工程实践表明,施工质量和进度得到了有效保证。  相似文献   

20.
详细描述了硗碛水电站泽根村1号料场石料开采爆破设计过程,并根据爆破试验结果优化了爆破参数,实现了合格的爆破石料开采效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号