首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two low-molecular cytolytic toxins (RmI and RmII) and four trypsin inhibitors were isolated from the aqueous extract of sea anemone Radianthus macrodactylus. The method of isolation involved precipitation with acetone, gel filtration on acrylex P-4, ion-exchange chromatography on CM-32 cellulose, affinity chromatography on trypsin-binding sepharose 4B, ion exchange chromatography on an Ultrapore TSK CM-3SW column, and reversed phase HPLC on a Silasorb C18 column. RmI, RmII, and JnI inhibitor displayed molecular masses 5100, 6100, and 7100 Da, respectively, when subjected to SDS-PAGE. The isoelectric points were 9.2 and 9.3 for RmI and RmII, respectively. The amino acid composition and N-terminal amino acid residue (glycine) were determined for RmI, RmII, and JnI. Both proteins were nontoxic to mice and crabs. Hemolytic activity was determined to be 25 and 20 HU/mg for RmI and RmII, respectively, and their action on erythrocyte membrane was not inhibited by exogenous sphingomyelin. RmI and RmII exhibited antihistamine activity.  相似文献   

2.
OBJECTIVE: To evaluate the effect of treatment with a combination of nitric oxide synthase inhibitors and inhaled nitric oxide on systemic hypotension during sepsis. DESIGN: Prospective, randomized, controlled study on anesthetized animals. SETTING: A cardiopulmonary research laboratory. SUBJECTS: Forty-seven male adult Sprague-Dawley rats. INTERVENTIONS: Animals were anesthetized, mechanically ventilated with room air, and randomized into six groups: a) the control group (C, n=6) received normal saline infusion; b) the endotoxin-treated group received 100 mg/kg i.v. of Escherichia coli lipopolysaccharide (LPS, n=9); c) the third group received LPS, and 1 hr later the animals were treated with 100 mg/kg i.v. Nw-nitro-L-arginine (LNA, n=9); d) the fourth group received LPS, and after 1 hr, the animals were treated with 100 mg/kg i.v. aminoguanidine (AG, n=9); e) the fifth group received LPS and 1 hr later was treated with LNA plus 1 ppm inhaled nitric oxide (LNA+NO, n=7); f) the sixth group received LPS and 1 hr later was treated with aminoguanidine plus inhaled NO (AG+NO, n=7). Inhaled NO was administered continuously until the end of the experiment. MEASUREMENTS AND MAIN RESULTS: Systemic mean blood pressure (MAP) was monitored through a catheter in the carotid artery. Mean exhaled NO (ENO) was measured before LPS (T0) and every 30 mins thereafter for 5 hrs. Arterial blood gases and pH were measured every 30 mins for the first 2 hrs and then every hour. No attempt was made to regulate the animal body temperature. All the rats became equally hypothermic (28.9+/-1.2 degrees C [SEM]) at the end of the experiment. In the control group, blood pressure and pH remained stable for the duration of the experiment, however, ENO increased gradually from 1.3+/-0.7 to 17.6+/-3.1 ppb after 5 hrs (p< .05). In the LPS treated rats, MAP decreased in the first 30 mins and then remained stable for 5 hrs. The decrease in MAP was associated with a gradual increase in ENO, which was significant after 180 mins (58.9+/-16.6 ppb) and reached 95.3+/-27.5 ppb after 5 hrs (p< .05). LNA and AG prevented the increase in ENO after LPS to the level in the control group. AG caused a partial reversal of systemic hypotension, which lasted for the duration of the experiment. LNA reversed systemic hypotension almost completely but only transiently for 1 hr, and caused severe metabolic acidosis in all animals. The co-administration of NO with AG had no added benefits on MAP and pH. In contrast, NO inhalation increased the duration of the reversal in MAP after LNA, alleviated the degree of acidosis, and decreased the mortality rate (from 55% to 29%). CONCLUSIONS: In this animal model, LPS-induced hypotension was alleviated slightly and durably after AG, but only transiently after LNA. Furthermore, co-administration of NO with AG had no added benefits but alleviated the severity of metabolic acidosis and mortality after LNA. We conclude that nitric oxide synthase (NOS) inhibitors, given as a single large bolus in the early phase of sepsis, can exhibit some beneficial effects. Administration of inhaled NO with NOS inhibitors provided more benefits in some conditions and therefore may be a useful therapeutic combination in sepsis. NO production in sepsis does not seem to be a primary cause of systemic hypotension. Other factors are likely to have a major role.  相似文献   

3.
Genetic knock-out in mice of peroxisome proliferator-activated receptor-alpha (PPAR alpha) can prolong inflammation in response to leukotriene B4. Although cyclooxygenase 2 has been shown to be induced by PPAR activation, the effect of PPAR agonists on the key inflammatory enzyme systems of nitric oxide synthase (NOS) and stress proteins has not been investigated. The effect on these of naturally occurring eicosanoid PPAR agonists (leukotriene B4 and 8(S)-hydroxyeicosatetraenoic acid, which are PPAR alpha selective; PGA2, PGD2, PGJ2, and delta12PGJ2, which are PPAR gamma selective) and the synthetic PPAR alpha agonist Wy14,643 was examined in activated RAW264.7 murine macrophages. Leukotriene B4 and 8(S)-hydroxyeicosatetraenoic acid stimulated nitrite accumulation, indicative of enhanced NOS activity. PGA2, PGD2, PGJ2, delta12PGJ2, and Wy14,643 reduced nitrite accumulation, with delta12PGJ2 being the most effective. The mechanism behind this reduction was examined using Western blotting. Inhibition of nitrite accumulation was associated with a fall in inducible NOS protein and an induction of heme oxygenase 1, correlating both dose dependently and temporally. Other proteins examined (cyclooxygenase 2, heme oxygenase 2, heat shock protein 70, and glucose-regulated protein 78) were unaffected. The data suggest that naturally occurring PPAR agonists can inhibit the inducible NOS enzyme pathway. This inhibition may be mediated by modulation of the stress protein, heme oxygenase 1. Thus, the generation of eicosanoid breakdown products during inflammation may contribute to its eventual resolution by activation of the PPAR system. This system may thus represent a novel target for therapeutic intervention in inflammatory disease.  相似文献   

4.
Nitric oxide (NO) is produced by a variety of cells within the respiratory tract, including inflammatory epithelial cells. NO has been detected in the exhaled air of normal human subjects, and its concentration is raised in asthmatic patients. To study whether exhaled NO arises from the respiratory tract, we administered a NO synthase (NOS) inhibitor, NG-monomethyl-L-arginine (L-NMMA), by inhalation (490 mg) in a double-blind randomized manner in nine normal and six asthmatic subjects. Because exhaled NO may arise from an inducible isoform of NO synthase that may be inhibited by glucocorticosteroids, we also studied the effects of oral prednisolone (30 mg orally for 3 d) in seven normal and six asthmatic subjects in a separate double-blind crossover study with matched placebo. After nebulized L-NMMA, there was a significant fall in peak exhaled NO compared with saline control values, with a mean fall of 43.6 +/- 5.6% in normal subjects (p < 0.01) and of 39.7 +/- 6.5% (p < 0.01) in asthmatic subjects, which persisted for 4 h. There were no effects of L-NMMA inhalation on heart rate, blood pressure, or FEV1 in either normal or asthmatic patients. Administration of oral prednisolone (30 mg) resulted in a fall in exhaled NO concentrations in asthmatic subjects by 21.6 +/- 5.0% at 48 h (p < 0.01) but no significant change in normal subjects. These data suggest that NOS inhibitors may be safely given in normal and asthmatic patients and that the increased exhaled NO seen in asthmatic patients is likely to be caused by induction of inducible NOS.  相似文献   

5.
Nitric oxide (NO) is synthesized from L-arginine by a family of enzymes known as the nitric oxide synthases (NOS). We have recently shown a NOS similar to constitutive brain NOS (bNOS) and endothelial NOS (ecNOS) to be present in spermatozoa. The aim of this study is to investigate NO production by human spermatozoa and the effects of stimulation and inhibition of NOS. This was carried out using the Iso-NO, an isolated NO meter and sensor, which provides rapid, accurate and direct measurements of NO. Semen samples with normozoospermic and asthenozoospermic profiles were prepared using a direct swim-up technique. Basal concentrations of NO and stimulated NO production were measured after exposure to the calcium ionophore (A23187; 0.01-10 microM) a potent activator of constitutive NOS. NO production in human spermatozoa was significantly increased by the addition of A23187 30 seconds after stimulation. Furthermore, this response was greatly diminished by pre-incubating the samples with competitive inhibitors of L-arginine, the substrate for NOS, before treatment with calcium ionophore. In the presence of N(G)-nitro-L-arginine methyl ester (L-NAME), N(G)-nitro-L-arginine (L-NA) or N(G)-methyl-L-arginine (L-NMMA; all at 10 microM), NO production was inhibited with a rank order of potency L-NAME > L-NMMA > L-NA which is in accordance with the inhibition of an endothelial type of constitutive NOS.  相似文献   

6.
7.
Nitric oxide (NO) is produced by endothelial cells and serves as a potent vasodilator. Several lines of evidence have shown that NO plays an important role in the regulation of blood pressure and regional blood flow. Endothelial NO synthase (eNOS) gene polymorphisms exhibit a positive association in myocardial infarction and smoking-dependent risk of coronary artery disease. However, the relationship between eNOS gene polymorphisms and hypertension is controversial. To examine the possible involvement of the eNOS gene in the genetic basis for hypertension, we identified genotypes for 2 eNOS gene polymorphisms in 166 hypertensive and 174 normotensive populations in Aomori prefecture, in northern Japan. The specific genotypes for Glu298Asp missense variant and variable numbers of tandem repeats in intron 4 (eNOS 4b/4a) were isolated using allele specific gene amplification and restriction fragment length polymorphism. The 298Asp variant was significantly correlated to hypertension in these groups (odds ratio, 1.8; 95% confidence interval, 1.1-3.2). The allelic frequencies of 298Asp for Glu298 in hypertensive patients were significantly higher than those in normotensive subjects (0.136 vs 0.083, p < 0.05). However, disequilibrium of eNOS4b/4a was absent between these 2 groups. These results suggest that Glu298Asp is a genetic susceptibility factor for hypertension.  相似文献   

8.
Cytokine-stimulated astrocytes and macrophages are potent producers of nitric oxide (NO), a free radical proposed to play an important role in organ-specific autoimmunity, including demyelinating diseases of the central nervous system. The aim of this study was to investigate effects of pentoxifylline (PTX), a phosphodiesterase inhibitor with immunomodulatory properties, on NO production and inducible NO synthase (iNOS) mRNA expression in rat astrocytes and macrophages. We have shown that PTX affects cytokine (interferon-gamma, IFN-gamma; interleukin-1, IL-1; tumour-necrosis factor-alpha, TNF-alpha)-induced NO production in both cell types, but in the opposite manner--enhancing in astrocytes and suppressive in macrophages. While PTX did not have any effect on enzymatic activity of iNOS in activated cells, expression of iNOS mRNA was elevated in astrocytes and decreased in macrophages treated with cytokines and PTX. Treatment with PTX alone affected neither NO production nor iNOS mRNA levels in astrocytes or macrophages. This study indicates involvement of different signalling pathways associated with iNOS induction in astrocytes and macrophages, thus emphasizing complexity of regulation of NO synthesis in different cell types.  相似文献   

9.
Nitric oxide (NO) production in macrophages by inducible nitric oxide synthase (NOS2) has multiple tissue damaging effects and is involved in the pathogenesis of inflammation and graft rejection. Haem oxygenase (HmOx) is the enzyme which degrades haem. Its inducible isoform, HmOx1, was recently shown to increase cellular resistance against oxidative stress and to decrease inflammation and graft rejection. Since haem is an essential cofactor for NOS2 activity, we investigated the effects of HmOx1-induction upon NO secretion in macrophages. We induced HmOx1 in BALB/c bone-marrow-derived macrophages by short-term exposure to haemin (20 micromol/l, 30 min); then we incubated them for 24 h to allow maximal expression of HmOx1 activity. Next, we activated the macrophages with lipopolysaccharide (LPS) and measured their NO production and their NO-dependent cytotoxicity against P815 cells. We found that HmOx induction 24 h before LPS activation in mouse macrophages suppresses their production of NO, while HmOx inhibition (with zinc protoporphyrin) increases NO secretion. NOS2 inhibition is reflected by the decrease of macrophage NO-dependent cytotoxicity against the P815 targets. We therefore propose that HmOx1 is a physiological inhibitor of NOS2 in activated macrophages because it decreases haem availability for NOS2 synthesis. NOS2 inhibition may explain the antinflammatory effects of HmOx induction which could also be used therapeutically in situations when NO hyperproduction leads to cytotoxic effects such as inflammation or transplant rejection.  相似文献   

10.
Murine macrophage nitric oxide synthase (NOS) was expressed in E. coli and purified in the presence (holoNOS) or absence (H4B-free NOS) of (6R)-tetrahydro-L-biopterin (H4B). Isolation of active enzyme required the coexpression of calmodulin. Recombinant holoNOS displayed similar spectral characteristics and activity as the enzyme isolated from murine macrophages. H4B-free NOS exhibited a Soret band at approximately 420 nm and, by analytical gel filtration, consisted of a mixture of monomers and dimers. H4B-free NOS catalyzed the oxidation of NG-hydroxy-L-arginine (NHA) with either hydrogen peroxide (H2O2) or NADPH and O2 as substrates. No product formation from arginine was observed under either condition. The amino acid products of NHA oxidation in both the H2O2 and NADPH/O2 reactions were determined to be citrulline and Ndelta-cyanoornithine (CN-orn). Nitrite and nitrate were also formed. Chemiluminescent analysis did not detect the formation of nitric oxide (*NO) in the NADPH/O2 reaction. The initial inorganic product of the NADPH/O2 reaction is proposed to be the nitroxyl anion (NO-) based on the formation of a ferrous nitrosyl complex using the heme domain of soluble guanylate cyclase as a trap, and the formation of a ferrous nitrosyl complex of H4B-free NOS during turnover of NHA and NADPH. NO- is unstable and, under the conditions of the reaction, is oxidized to nitrite and nitrate. At 25 degreesC, the H2O2-supported reaction had a specific activity of 120 +/- 14 nmol min-1 mg-1 and the NADPH-supported reaction had a specific activity of 31 +/- 6 nmol min-1 mg-1 with a KM,app for NHA of 129 +/- 9 microM. HoloNOS catalyzed the H2O2-supported reaction with a specific activity of 815 +/- 30 nmol min-1 mg-1 and the NADPH-dependent reaction to produce *NO and citrulline at 171 +/- 20 nmol min-1 mg-1 with a KM, app for NHA in the NADPH reaction of 36.9 +/- 0.3 microM.  相似文献   

11.
Nitric oxide (NO) is a critical mediator of various biological functions. NO is generated from L-arginine by nitric oxide synthase (NOS), which has three isoforms; endothelial-type NOS (eNOS) and brain-type NOS (bNOS) are constitutive enzymes, and inducible-type NOS (iNOS) is expressed after stimulation. We investigated the expression of NOS in normal human skin by an immunohistochemical technique and western blotting analysis. In human skin, epidermal keratinocytes and the outer root sheath were labeled with not only eNOS antibody but also with iNOS antibody. Both eNOS and iNOS protein in epidermal keratinocytes were confirmed by western blotting. eNOS immunoreactivity was observed in endothelial cells, fibroblasts, the arrector pili muscle, apocrine secretory gland, eccrine coiled duct, and eccrine secretory gland. bNOS immunoreactivity was observed in mast cells. No staining with anti-bNOS antibody was observed in any other cell type. Our present findings suggest that epidermal keratinocytes in normal human skin contain both eNOS and iNOS.  相似文献   

12.
The biogenesis of nitric oxide is catalyzed by nitric oxide synthase (NOS) which forms L-citrulline and NO from L-arginine. Here we review the enzymology of NOS. We discuss its modular structure, its prosthetic groups and cofactors, and we provide a brief account of present knowledge regarding cellular targeting and regulation of the different isoforms. The various reactions which are catalyzed by NOS are reviewed, and an inventory of different inhibitor types is given. Special attention is paid to the role of the cofactor tetrahydrobiopterin (BH4) and of the dimeric structure, and to the possibility that the main product of NOS catalysis under some conditions may not be NO. Based on a number of recent observations, we postulate that neuronal NOS with one equivalent of BH4 per dimer (a state which may be physiologically relevant) catalyzes the concerted formation of peroxynitrite.  相似文献   

13.
The role of nitric oxide (NO) in the pathophysiology of gram-positive sepsis is uncertain. In inflammatory conditions, high-output NO production is catalyzed by the enzyme inducible nitric oxide synthase (iNOS). The ability of 2 strains of pneumococci, pneumococcal cell wall preparations, and purified pneumococcal capsule (Pnu-Imune 23) to trigger the production of iNOS protein and NO in RAW 264.7 murine macrophages was tested. Live pneumococci, oxacillin-killed pneumococci, and pneumococcal cell wall preparations stimulated the production of iNOS and NO by RAW 264.7 cells in the presence, but not the absence, of low concentrations of recombinant murine interferon-gamma. In contrast, purified pneumococcal capsule induced little or no iNOS or NO production by these cells. Thus, pneumococci stimulate high-output NO production by murine macrophages. The potential role of NO in the pathogenesis of pneumococcal sepsis deserves further study.  相似文献   

14.
We report here a photoneural regulation of nitric oxide synthase (NOS) activity in the rat pineal gland. In the absence of the adrenergic stimulation following constant light exposure (LL) or denervation, pineal NOS activity is markedly reduced. A maximal drop is measured after 8 days in LL. When rats are housed back in normal light:dark (LD) conditions (12:12), pineal NOS activity returns to normal after 4 days. A partial decrease in pineal NOS activity is also observed when rats are placed for 8 days in LD 18:6 or shorter dark phases, indicating that pineal NOS activity reflects the length of the dark phase. Because it is known that norepinephrine (NE) is released at night from the nerve endings in the pineal gland and this release is blocked by exposure to light, our data suggest that NOS is controlled by adrenergic mechanisms. Our observation may also explain the lack of cyclic GMP response to NE observed in animals housed in constant light.  相似文献   

15.
BACKGROUND: It has been postulated that nitric oxide (NO) is a neurotransmitter involved in consciousness, analgesia, and anesthesia. Halothane has been shown to attenuate NO-mediated cyclic guanosine monophosphate accumulation in neurons, and a variety of anesthetic agents attenuate endothelium-mediated vasodilation, suggesting an interaction of anesthetic agents and the NO-cyclic guanosine monophosphate pathway. However, the exact site of anesthetic inhibitory action in this multistep pathway is unclear. The current study examines effects of volatile and intravenous anesthetic agents on the enzyme nitric oxide synthase (NOS) in brain. METHODS: NOS activity was determined by in vitro conversion of [14C]arginine to [14C]citrulline. Wistar rats were decapitated and cerebellum quickly harvested and homogenized. Brain extracts were then examined for NOS activity in the absence and presence of the volatile anesthetics halothane and isoflurane, and the intravenous agents fentanyl, midazolam, ketamine, and pentobarbital. Dose-response curves of NOS activity versus anesthetic concentration were constructed. Effects of anesthetics on NOS activity were evaluated by analysis of variance. RESULTS: Control activities were 57.5 +/- 4.5 pmol.mg protein-1.min-1 in the volatile anesthetic experiments and 51.5 +/- 6.5 pmol.mg protein-1.min-1 in the intravenous anesthetic experiments. NOS activity was not affected by ketamine (< or = 1 x 10(-4) M), pentobarbital (< or = 5 x 10(-5) M), fentanyl (< or = 1 x 10(-5) M), and midazolam (< or = 1 x 10(-5) M). Halothane decreased NOS activity to 36.7 +/- 2.5 (64% of control, P < 0.01 from control), 23.8 +/- 4.3 (41%, P < 0.01 from control and < 0.05 from 0.5% halothane), 25.2 +/- 3.8 (44%, P < 0.01 from control and < 0.05 from 0.5% halothane), and 19.7 +/- 2.8 (34%, P < 0.01 from control and < 0.05 from 0.5% halothane) pmol.mg protein-1.min-1 at 0.5, 1.0, 2.0, and 3.0% vapor. Isoflurane decreased NOS activity to 48.9 +/- 6.1 (85% of control), 46.0 +/- 3.2 (80%, P < 0.05 from control), 40.3 +/- 5.1 (70%, P < 0.05 from control), and 34.2 +/- 4.0 (60%, P < 0.05 from control and 0.5% and 1.0% isoflurane) pmol.mg protein-1.min-1 at 0.5, 1.0, 1.5, 2.0% vapor, respectively. CONCLUSIONS: Volatile anesthetics inhibit brain NOS activity in an in vitro system, but the intravenous agents examined have no effect at clinically relevant concentrations. This inhibition suggests a protein-anesthetic interaction between halothane, isoflurane, and NOS. In contrast, intravenous agents appear to have no direct effect on NOS activity. Whether intravenous agents alter signal transduction or regulatory pathways that activate NOS is unknown.  相似文献   

16.
17.
Nitric oxide (NO) has an important physiological role in regulating vascular tone and is also relevant to many pathological processes including hypertension and atherosclerosis. Endothelial constitutive nitric oxide synthase (ecNOS) is the key enzyme in determining basal vascular wall NO production. We used a combination of maximum-likelihood-based statistical genetic methods to explore the contributions of the ecNOS gene and other unmeasured genes to basal NO production measured by its metabolites (NOx: nitrite and nitrate) in 428 members of 108 nuclear families. Our initial quantitative genetic analysis estimated that approximately 30% of the variance in fasting NOx levels is due to genes (chi 2(1) = 16.04, P = .000062). Complex segregation analysis detected the effects of both a single locus and residual polygenes on NOx levels, and measured genotype analysis showed that plasma NOx levels in those homozygous for the rare allele (64.9 +/- 7.8 mumol/L) were significantly higher (P = .000242) than those homozygous for the common allele (30.2 +/- 3.1 mumol/L). The results of the variance component linkage analysis were consistent with linkage of a quantitative trait locus in or near the ecNOS gene to variation in plasma NOx levels (P = .0066). While many environmental factors have been shown to alter transiently plasma NOx levels, our study is the first to identify a substantial effect of the ecNOS locus on the variance of plasma NOx, i.e. basal NO production. This finding may be relevant to atherogenesis and NO-related disorders.  相似文献   

18.
The in vitro amplification method for heterologous gene expression in mammalian cells is based on the stable transfection of cells with long, linear DNA molecules having several copies of complete expression units, coding for the gene of interest, linked to one terminal unit, coding for the selectable marker. DNA concatenamers containing additional expression units can also be prepared: we exploited this feature by co-polymerizing expression units coding for granulocyte colony-stimulating factor (G-CSF) with cassettes for dihydrofolate reductase (DHFR) and for neomycin (Nm) resistance, as selectable markers. We were thus able to obtain high level production of G-CSF in chinese hamster ovary (CHO) dhfr- cells by combining in vitro amplification to just one step of in vivo amplification. This approach required a considerably shorter time than the classical, stepwise amplification by methotrexate.  相似文献   

19.
Nitric oxide (NO), generated by inducible NO synthase (iNOS) in migrating macrophages, is increased in glomerulonephritis. This study investigates the effect of NO inhibition on rat nephrotoxic nephritis (NTN) to clarify the role of NO production in glomerular damage. NTN was induced in Sprague Dawley rats by an injection of an anti-glomerular basement membrane (GBM) antibody. Urinary nitrite excretion and nitrite release from kidney slices (5.47 +/- 1.19 versus 2.15 +/- 0.73 nmol/mg protein, NTN versus Control, P < 0.05) were increased in NTN on day 2. Glomerular macrophage infiltration and intercellular adhesion molecule (ICAM)-1 expression increased from day 2. iNOS expression was increased in interstitial macrophages. Glomerular endothelial cell NOS (ecNOS) expression evaluated by counting immunogold particles along GBM was suppressed (0.06 +/- 0.02 versus 0.35 +/- 0.04 gold/micron GBM, P < 0.0001). Glomerular damage developed progressively. NG-nitro-L-arginine methyl ester (L-NAME), which inhibits both iNOS and ecNOS and aminoguanidine (AG), a relatively selective inhibitor for iNOS, equally suppressed nitrite in urine and renal tissue. Glomerular ICAM-1 expression and macrophage infiltration were reduced by L-NAME, but not by AG. Expression of ecNOS was significantly increased by L-NAME (0.91 +/- 0.08, P < 0.0001 versus NTN), but slightly by AG (0.18 +/- 0.04). AG significantly and L-NAME slightly attenuated the glomerular damage at day 4. In conclusion, suppression of iNOS prevents glomerular damage in the early stage of NTN. Treatment by L-NAME reduces macrophage infiltration by suppression of ICAM-1 expression, which may be explained by an increase in ecNOS expression.  相似文献   

20.
Phospholipids are the major constituents of cell membranes, and have numerous structural and functional roles in the nervous system. Although the metabolic pathways responsible for the syntheses of the phosphatides phosphatidylcholine (PtdCho), phosphatidylethanolamine (PtdEtn), and phosphatidylserine (PtdSer) are well understood, the mechanisms controlling these pathways in neural tissue have not been fully characterized. Recent studies have suggested that the main factors controlling PtdCho and PtdEtn synthesis by the Kennedy cycle tend to be the intracellular levels of key substrates for the biosynthetic enzymes, or changes in the activities of the rate-limiting enzymes. Moreover, different control mechanisms may operate, depending upon the functional state of the tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号