首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
《煤矿安全》2016,(12):168-171
单位面积内的抑爆剂浓度是影响瓦斯爆炸抑制效果的关键因素。为研究抑爆剂面密度对瓦斯爆炸传播抑制效果的影响,在500 mm爆炸管道内开展了5种不同面密度抑爆剂作用下的抑爆实验。研究表明:ABC超细干粉灭火剂对爆炸火焰的抑制作用较对爆炸压力的衰减作用更明显,实验中爆炸压力降幅最高为57.6%,火焰速度降幅最高达100%。抑爆效果随抑爆剂面密度的增大而增强,只有当抑爆剂面密度大于临界值时,爆炸压力与火焰才能同时得到有效控制,实验中测得的临界面密度为40.8 kg/m~2。  相似文献   

2.
为了研究纳米粉体的抑爆作用,采用自主改进容积为20L的近球形抑爆试验系统,测试添加SiO2纳米粉体时的瓦斯爆炸极限、压力等特性参数的变化,并同微米级粉体对比分析其抑爆效果,同时研究粉体质量浓度和点火时间对抑爆效果的影响.试验结果表明:同微米级粉体相比.纳米粉体的抑爆效果更好;质量浓度为0.1 g/L、粒径为 50 nm 的SiO2 粉体可使瓦斯与空气混合气体(瓦斯体积分数7%)的爆炸压力下降约70%,压力上升平均速率下降约90%,爆炸极限范围缩小约43%;超细粉体抑爆剂在固定空间内存在最佳抑爆浓度范围,并不是粉体添加量越大抑爆效果越好;粉体抑爆剂喷洒形成固体微粒气溶胶后存在最佳抑爆时间范围,超出该时间范围抑爆作用衰减明显.  相似文献   

3.
改性赤泥粉体抑制瓦斯爆炸的实验研究   总被引:4,自引:0,他引:4       下载免费PDF全文
余明高  孔杰  王燕  郑凯  郑立刚 《煤炭学报》2014,39(7):1289-1295
为了研制经济且高效的抑爆剂,以拜耳法赤泥为原料,经过脱碱、改性处理后得到具有较高比表面积(255 m2/g)的超细改性赤泥粉体材料。利用自制瓦斯抑爆实验系统,研究了改性赤泥粉体的抑爆性能。研究结果表明:经过改性的赤泥粉体在瓦斯抑爆实验中表现出良好的抑爆效果。其中,质量浓度为0.15 g/L的赤泥粉体可使甲烷体积分数为9.5%的甲烷-空气预混气体的爆炸最大压力降低30%,压力峰值出现时间延迟35.1%左右。结合热分析、氮气吸附-脱附等测试结果,对改性赤泥粉体的抑爆机理进行了讨论,分析表明改性赤泥具有较高的吸热性,同时具有较高的比表面积,能够有效吸附爆炸中产生的活性自基,从而达到抑爆的目的。  相似文献   

4.
为了提高泡沫隔爆装置的抑爆性能,提出了向泡沫金属板中填充干粉抑爆剂来增强泡沫金属板的隔爆效果。试验以自行研制的"瓦斯-煤尘爆炸系统"为试验基础,采用15 ppi、0.3 g/cm~3、铁∶镍=9∶1泡沫铁镍金属板为填充骨架,以ABC和BC超细干粉为填充材料。通过正交试验,寻求向泡沫金属板中填充的最佳抑爆材料和填充比例。试验结果表明:泡沫金属板中填充干粉抑爆剂具有良好的抑爆效果,15 ppi、0.3 g/cm~3、铁∶镍=9∶1泡沫铁镍金属板最佳填充比例为35%,抑爆效果最佳的填充体是ABC∶BC=1∶1的混合干粉抑爆剂,能使爆炸产生的压强由0.342 MPa降低至0.098 MPa,衰减率为71.3%,火焰速度由522 m/s降低至114 m/s,降低率达到78.1%,爆炸产生的强度明显减小。  相似文献   

5.
干粉灭火剂粒度对抑爆性能的影响   总被引:6,自引:1,他引:5  
以ABC干粉灭火粉剂作为抑制瓦斯、煤尘爆炸的抑爆剂,有针对性地研究粒度对其抑爆性能的影响,对抑爆用干粉灭火剂的使用和生产具有指导意义。  相似文献   

6.
《煤矿安全》2016,(1):5-8
自动喷粉抑爆装置是低浓度瓦斯管道输送的重要安全保障设备之一。运用内径500 mm爆炸管道研究自动喷粉抑爆装置对输送管道内低浓度瓦斯爆炸传播的抑制效果,并分析其抑爆机理。结果表明:抑爆效果受抑爆装置安装位置的影响很大,火焰传感器与抑爆器的最小安装距离为20 m。爆炸火焰在抑爆器后方需传播一定距离才能被完全扑灭,存在一个区间和时间的过程。冲击波压力峰值由于产气剂喷射压力的抵消和ABC干粉灭火剂的抑制作用发生衰减,但衰减幅度相对较小。  相似文献   

7.
超细粉体云幕抑制大型管道内瓦斯爆炸火焰传播   总被引:2,自引:0,他引:2       下载免费PDF全文
在内径357 mm、长32.4 m的管道中,以电离探针作为爆炸火焰传播速度的主要检测手段,利用自主研制的爆炸抑制装置,开展了超细粉体云幕抑制体积分数为9.5%的瓦斯爆炸火焰传播的研究。结果表明:触发时间为125 ms条件下,采用超细ABC粉体抑爆剂,能使爆炸火焰传播得到不同程度的抑制,当抑爆剂充装量为800 g时,爆炸火焰得以完全熄灭;就抑爆介质而言,其爆炸抑制效果依次为:超细ABC粉体、超细SiO_2粉体、普通ABC、超细Mg(OH)_2;抑爆装置触发时间大于一临界值时,仅能够减弱火焰传播,而不能将其完全熄灭。  相似文献   

8.
采用自主改进的20 L近球型抑爆实验系统,测试添加硅藻土粉体时瓦斯爆炸极限、压力等特性参数的变化,并同石英粉对比分析其抑爆效果,结合热重分析方法研究硅藻土表面物化特性对抑爆作用过程的影响.结果表明:硅藻土粉体对瓦斯爆炸具有一定的抑制作用,且效果优于石英粉;质量浓度为0.1 g/L的硅藻土粉体可使甲烷与空气混合气体(甲烷体积分数7%)的爆炸压力下降30%左右,爆炸极限范围缩小约28%;硅藻土微孔结构和表面羟基特点是影响其抑爆效果的关键因素.  相似文献   

9.
瓦斯煤尘复合爆炸严重影响了煤矿的安全生产,造成了大量的生产损失与人员伤亡。研发能应用在煤矿中高湿低温等复杂环境中的抑爆剂成为了研究的难点与热点。为研发出新型改性高岭土瓦斯煤尘抑爆剂,通过插层改性的方法制备了3种改性高岭土抑爆剂,采用热重分析、扫描电镜和红外光谱分析对样品的热稳定性、表面结构以及官能团变化进行了研究。选用重庆南桐煤样,通过标准筛对煤样进行筛分,通过粒径扫描与扫描电镜观测了煤粉的粒径分布与表面形貌。使用20 L球型爆炸系统对抑制剂抑制瓦斯煤尘爆炸的特性进行了研究,探究改性后高岭土对爆炸最大压力、最大压力上升速率及爆炸峰值时间等爆炸特征参数的影响;基于粉体表征结果及抑爆数据对改性高岭土抑制作用下的瓦斯煤尘爆炸的抑爆机理进行了分析。结果表明:改性高岭土抑爆剂兼具高岭土及插层粒子的双重抑爆效果,改善了高岭土的团聚现象,同时氨基磺酸铵粒子提升了高岭土的热解与抑爆性能。对瓦斯煤尘复合爆炸的抑制性能明显优于改性前粉体,且抑爆效果随着抑制剂质量浓度增加而增大,存在临界质量浓度,试验表明,当改性高岭土与煤尘比例为2∶3,且质量浓度为0.175 g/L时,最大爆炸压力的降幅达到了32.6%,爆炸峰值时间延缓了0.45 s,展现出最佳的抑爆效果。  相似文献   

10.
瓦斯输送管道爆炸自动喷粉抑爆技术   总被引:3,自引:0,他引:3  
通过论述自动喷粉抑爆技术原理及构成,分析总结瓦斯管道爆炸传播规律,得出自动喷粉抑爆技术抑爆效果主要取决于装备相应时间、干粉浓度粒度及NH4H2PO4质量分数。在DN500爆炸试验管道进行瓦斯管道爆炸传播试验和抑爆试验研究自动喷粉抑爆装置抑爆效果,抑爆器动作后,爆炸火焰在抑爆器后3.5 m内被扑灭,爆炸冲击波在爆炸火焰被扑灭后,不断衰减,最终消失。试验表明:自动喷粉抑爆技术能够有效的抑制瓦斯爆炸。  相似文献   

11.
近几年来我国煤矿爆炸事故频繁发生,为了有效控制和预防爆炸灾害,阻隔爆技术正在迅速发展,它能将已发生的爆炸控制在一定范围内并扑灭,防止灾害的进一步扩大。在参考国内相关资料的基础上,对广泛应用的岩粉棚、ABC干粉灭火剂、隔爆水棚等防爆抑爆技术进行了总结和概述,综述这些方法的研究现状及工作原理,分析其优缺点,为阻隔爆新技术的开发提供参考资料。  相似文献   

12.
NH_4H_2PO_4粉体的吸热分解热效应一直被认为是NH_4H_2PO_4粉体抑爆的重要原因。为了进一步揭示NH_4H_2PO_4粉体吸热分解后对甲烷爆炸的作用,采用自主改进的XKWB-1型20 L近球型密闭式气体爆炸实验系统,测试NH_4H_2PO_4粉体热分解产物氨气和五氧化二磷加入后的甲烷爆炸压力参数,分析NH_4H_2PO_4粉体热分解产物对甲烷爆炸过程的影响。结果表明:NH_4H_2PO_4粉体热分解产物氨气和五氧化二磷对甲烷爆炸过程的影响均呈现出了一定的弱化作用,且氨气对高体积分数甲烷爆炸弱化效果更明显。另外,分解产物氨气对甲烷爆炸的弱化作用明显大于五氧化二磷,这一贡献对比对于高体积分数的甲烷更加显著。  相似文献   

13.
粉体抑爆剂在煤矿应用研究的现状与展望   总被引:1,自引:1,他引:0  
对粉体抑爆剂在煤矿中的应用及研究现状进行了分析,提出将抑爆剂分为惰化剂和抑制剂的两种划分;并就现有粉体抑爆剂的抑爆机理进行了探讨,综合得出三种抑爆机理类型,进而对现有粉体抑爆剂的理化性质及抑爆机理进行了对比;对粉体抑爆剂的最新研究动态进行了分析,并展望了粉体抑爆剂的研究方向。  相似文献   

14.
介绍了采用移动式注氮机注氮抑爆技术处理爆炸火区的成功做法,并阐述了注氮防灭火技术机理、条件、工艺过程、效果检验、配套措施,及在注氮防灭火中值得注意的几个问题。  相似文献   

15.
粉体抑爆技术应用于煤矿的现状与问题探讨   总被引:2,自引:0,他引:2  
煤矿井下瓦斯爆炸、煤尘爆炸会引起巨大的财产损失和重大的人员伤亡,采取有效技术措施将危险遏制在灾害发生前是实现安全生产的重要手段。粉体抑爆是抑爆技术中的一种,其抑爆性粉体的研究和抑爆装置的研发成为人们关注的课题。本文探讨了抑爆性粉体和抑爆设备在煤矿井下的应用现状,并指出为控制爆炸发展煤矿粉体抑爆技术需进一步解决的问题。  相似文献   

16.
薛少谦 《煤矿安全》2013,44(7):66-69
通过阐述主动喷粉抑爆技术的技术原理,分析总结瓦斯煤尘爆炸传播规律,认为主动喷粉抑爆技术的应用效果主要与抑爆粉剂浓度、主动喷粉抑爆技术装备动作时间及瓦斯煤尘爆炸传播规律有关;并通过大型地下试验巷道,模拟实际应用主动喷粉抑爆技术及装备抑制实际发生的瓦斯煤尘爆炸传播试验,分析了主动喷粉抑爆技术对爆炸火焰及冲击波压力的抑爆效果,验证了主动喷粉抑爆技术能够在爆炸初期抑制瓦斯煤尘爆炸传播。  相似文献   

17.
瓦斯输送管道自动抑爆技术   总被引:2,自引:0,他引:2  
祝钊  李伟  陈骋  白雪  吴北平 《煤矿安全》2012,43(2):40-42
为了提高瓦斯输送管道的安全性,在矿井瓦斯输送管道中引入自动抑爆技术,将火焰探测技术与自动喷洒控制技术相结合,实现瓦斯输送管道的主动抑爆。选取CO2灭火剂为抑爆喷洒的灭火介质,进一步提高了抑爆系统的可靠性与灭火质量。通过实验室模拟试验证明抑爆装置能够快速捕捉火焰信息并迅速喷洒灭火介质,抑爆喷洒器6 m外无火焰信息。  相似文献   

18.
文虎  王秋红  邓军  罗振敏 《煤炭学报》2009,34(11):1479-1482
采用20 L的球形不锈钢爆炸罐试验系统,考察不同浓度Al(OH)3超细粉体抑制瓦斯爆炸的效果.实验结果表明,随着Al(OH)3粉体浓度的增加,甲烷最大爆炸压力先减小后增大,即存在控制瓦斯爆炸的最佳的粉体浓度.当甲烷浓度为9.5%时,1.3 μm超细粉体Al(OH)3的最佳控爆浓度约为250 g/m3,此粉体浓度下的最大爆炸压力、最大压力上升速率、到达最大爆炸压力的时间分别为0.583 MPa,9.082 MPa/s,190 ms;当甲烷浓度为7.0%时的最佳控爆浓度约为200 g/m3,此粉体浓度下的最大爆炸压力、最大压力上升速率、到达最大爆炸压力的时间分别为0.474 MPa,3.76 MPa/s,400 ms.  相似文献   

19.
Using a 20 L spherical explosion suppressing test system, the largest gas explosion pressure and maximum pressure rising rate with additives of ultra-fine ABC dry powder and diatomite powder were tested and compared, and the explosion suppression effect of the two kinds of powder was analyzed. Experimental results show that both powders can suppress gas explosion and ABC dry powder is superior to diatomite powder. Adding two powders under the same experimental conditions, when methane concentration is 7.0%, the maximum explosion pressure decreased 39% and 4%, respectively, while the rising rate of the maximum pressure decreased 80% and 53%, respectively. When methane concentration is 9.5%, the maximum explosion pressure decreased 14% and 12%, respectively, the rising rate of maximum pressure decreased 62% and 27%, respectively, the maximum explosion pressure decreased 23% and 18%, respectively, while the rising rate of the maximum pressure decreased 77% and 70%, respectively. When methane concentration is 12.0%, the explosion suppression effect of ultra-fine ABC dry powder is not affected by the methane concentration, and the explosion suppression effect of diatomite powder under high methane concentrations is more obvious.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号