首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein, we demonstrate the preparation of CBS glass-ceramics by using chemically pure CaO, SiO2 and B2O3 as raw materials. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrical measurements have been carried out to explore the effect of boron addition on crystallization, microstructure and dielectric properties of CBS glass-ceramics. Furthermore, the influence of sintering temperature and sintering schemes has been systematically investigated. Results show that the increase of boron content reduces crystallization temperature of CBS glass-ceramics. For instance, with the increase of boron oxide from 10.8?wt% to 19.4?wt%, crystallization temperature decreased by 130?°C. However, excessive boron affects the precipitation of wollastonite crystal phase, destroys crystal structure and damages close arrangement of crystal grains. Moreover, higher boron content weakens dielectric properties of CBS glass-ceramics. In this study, the best molar ratio of ingredients, meeting the ideal target material, is n(Ca): n(Si): n(B) =?1:1:0.6. After optimal sintering procedure, dielectric constant of the best sample was 6 (1?MHz), 6 (10?MHz), and dielectric loss was 2.27?×?10?3 (1?MHz) and 3.37?×?10?3 (10?MHz). We demonstrate that the optimal boron content and sintering procedure is required to attain desired dielectric properties of CBS glass-ceramics.  相似文献   

2.
《Ceramics International》2017,43(12):8898-8904
The SrO-Na2O-Nb2O5-SiO2 (SNNS) glass-ceramics were prepared through the melt-quenching combined with the controlled crystallization technique. XRD results showed Sr6Nb10O30, SrNb2O6, NaSr2Nb5O15 with tungsten bronze structure and NaNbO3 with the perovskite structure. With the decrease of crystallization temperature, dielectric constant firstly increased and then decreased, while breakdown strength (BDS) was increased. High BDS of the glass-ceramics is attributed to the dense and uniform microstructure at low crystallization temperature. The optimal dielectric constant of 140±7 at 900 °C and BDS of 2182±129 kV/cm at 750 °C were obtained in SNNS glass-ceramics. The theoretical energy-storage density was significantly improved up to the highest value of 15.2±1.0 J/cm3 at 800 °C, which is about 5 times than that at 950 °C. The discharged efficiency increased from 65.8% at 950 °C to 93.6% at 750 °C under the electric field of 500 kV/cm by decreasing crystallization temperature.  相似文献   

3.
Generally, highly crystalline transparent glass-ceramics possess excellent physical and chemical properties compared to organic and other inorganic optical materials. We have successfully prepared highly crystalline transparent glass-ceramics in the MgO-Al2O3-SiO2 system by "extreme-time" nucleation & "finite-time" crystallization processes using P2O5, ZrO2 and TiO2 as multiple nucleating agents. The results revealed that the crystallization of glass is controlled by a three-dimensional interfacial crystal growth process. These glass-ceramics mainly consisted of cordierite crystals with a residual glassy phase, and crystallinity increased with crystallization time, but light transmittance decreased with crystallization time due to enlarged grain sizes. EDS mapping revealed a uniform distribution of elements within the glass-ceramic. In the optimal preparation condition (825?°C/96?h?+?990?°C/3?h), these glass-ceramics exhibited a high crystallinity (87.3?vol. %), high transmittance (78%), and excellent mechanical properties. This work provides a roadmap for preparing highly crystalline transparent glass-ceramics for applications in optical engineering.  相似文献   

4.
The influence of BaO content (up to 15?mol%) on the crystallization behaviour, structure, thermal properties and microwave dielectric properties of the BaO-CaO-B2O3-SiO2 glasses and glass-ceramics system was investigated. The glasses were produced by melting at 1400?°C and quenching into water, and the glass-ceramics were produced via heat treatment at temperatures between 750 and 800?°C. The results of X-ray diffraction analysis showed that increasing the BaO content raised the resistance of the glass against crystallization and favoured the transformation of β-CaSiO3 and α-CaSiO3 phases, which crystallized in the Ba-free and in low BaO content compositions, into SiO2 and Ba4Si6O16, which crystallized in compositions with higher concentrations of BaO. The BaO content had little influence on the glass transition temperature (Tg) and the linear coefficient of thermal expansion (CTE), but strongly reduced the softening point (Ts). Even the addition of BaO as minor additives resulted in a dramatic reduction of the Ts; for example, the Ts decreased from 902?°C for the Ba-free composition to 682?°C for the BaO-containing one (5%). Low values of the dielectric constant (5.9?≤?εr ≤?6.63) and dielectric loss (1.12?×?10?3 ≤?tanδ?≤?3.15?×?10?3) were measured.  相似文献   

5.
《Ceramics International》2022,48(16):23119-23126
The high-strength mica-containing glass-ceramics were prepared from granite wastes by bulk crystallization. The influences of SiO2/Al2O3 molar ratio (S/A = 7.72, 9.62, 12.58, 17.82 and 29.67) on the crystallization behavior, microstructure, mechanical properties and machinability of glass-ceramics were investigated. The results demonstrated that the polymerization degree of the glass network decreased with the S/A ratio increasing, which further caused the decrease in glass transition temperature and crystallization temperatures. The increase in the S/A ratio promoted the precipitation of diopside, hectorite, kalsilite and tainiolite in glass-ceramics when the samples were heated at 750 °C, while inhibiting the precipitation of forsterite. For the glass-ceramics crystallized at 800 and 900 °C, the main crystalline phases transformed from diopside, forsterite, and nepheline to diopside, kalsilite, and tainiolite, with the S/A ratio increasing. As the SiO2 gradually replaced Al2O3, the morphology of crystals changed from lamellar to granular, while the mean size of crystals reduced. The Vickers-Hardness values of glass-ceramics crystallized at 800 and 900 °C ascended with S/A ratio rising, and the values were above 6.30 GPa. The bending strength of most glass-ceramics is stable between 90 and 140 MPa, among which the maximum bending strength is 133.28 ± 14.81 MPa. The fracture toughness of the glass-ceramic crystallized at 800 and 900 °C declined, while that at 700 °C increased with a larger S/A ratio. Glass-ceramics after heat-treated at 900 °C with S/A ratio of 9.62 had the largest fracture toughness of 3.28 ± 0.15 MPa m1/2. In preliminary tests of machinability, glass-ceramic after heat-treated at 900 °C with S/A ratio of 9.62 showed better results.  相似文献   

6.
Two low temperature sintered NaPb2B2V3O12 (B?=?Mg, Zn) ceramics with garnet structure were synthesized through conventional solid state reaction route and their crystal structure and microwave dielectric properties were investigated for the first time. Rietveld refinements of XRD patterns show both the compounds belong to cubic symmetry with space group Ia-3d. Observed number of Raman bands and group theoretical predictions also confirm cubic symmetry with space group Ia-3d for both NPMVO and NPZVO. At the optimum sintering temperature of 725?°C NPMVO has a relative permittivity of 20.6?±?0.2, unloaded quality factor (Quxf) of 22,800?±?1500?GHz (f?=?7.7?GHz) and temperature coefficient of resonant frequency +25.1?±?1?ppm/°C while NPZVO has relative permittivity of 22.4?±?0.2, Quxf of 7900?±?1500?GHz (f?=?7.4?GHz) and near zero temperature coefficient of resonant frequency of -6?±?1?ppm/°C at 650?°C. The relative permittivity of the compounds is inversely related to the corresponding Raman shifts.  相似文献   

7.
This study focused on the glass forming, crystallization, and physical properties of ZnO doped MgO-Al2O3-SiO2-B2O3 glass-ceramics. The results show that the glass forming ability enhances first with ZnO increasing from 0 to 0.5 mol%, and then weakens with further addition of ZnO which acted as network modifier. No nucleating agent was used and the crystallization of studied glasses is controlled by a surface crystallization mechanism. The predominant phase in glass-ceramics changed from α-cordierite to spinel/gahnite as ZnO gradually replaced MgO. The phase type did not change; however, the crystallinity and grain size in glass-ceramics increased when the glasses were treated from 1030 °C to 1100 °C. The introduction of ZnO can improve the thermal, mechanical, and dielectric properties of the glass-ceramics. The results reveal a rational mechanism of glass formation, crystal precipitation, and evolution between structure and performance in the xZnO-(20-x)MgO-20Al2O3-57SiO2-3B2O3 (0 ≤ x ≤ 20 mol%) system.  相似文献   

8.
Various glass-ceramics were prepared based on the CaO-Al2O3-SiO2 system with the addition of Li2O in an attempt to develop a suitable sealant for SiC ceramic. The effects of Li2O content on crystallization behavior and thermal expansion properties were systematically investigated. The results revealed that the addition of Li2O significantly reduced the crystallization activation energy of glass. Besides, as the Li2O content increased, the precipitation of spodumene and wollastonite was promoted while the precipitation of anorthite was suppressed. By controlling the Li2O content and crystallization treatment, the coefficient of thermal expansion (CTE) of glass-ceramic could be adjusted in a certain range, from 8.5 × 10?6/°C to 2.8 × 10?6/°C. When the content of Li2O was 3 wt.%, the CTE of the formed glass-ceramic was well-matched with that of SiC ceramic. Furthermore, it was confirmed that this glass-ceramic possessed an excellent wettability and weldability to SiC ceramic.  相似文献   

9.
To obtain an alkali-free glass substrate with enhanced properties for thin-film transistor–liquid crystal displays (TFT–LCDs) applications, we chose a base glass composed of 3B2O3-15Al2O3-58SiO2-22MgO-0.5SrO-1.5MgF2 (mol%) for nucleation–crystallization. The results show that when the nucleation–crystallization processes of the base glass are 810 °C/6 h + 880 °C/6–9 h, the prepared GC/6–GC/9 glass-ceramics exhibit enhanced properties because of the precipitation of nano-sized cordierite. The transmittances in the visible range of the GC/6–GC/9 glass-ceramics exceed 85%, the densities are 2.564–2.567 g/cm3, thermal expansion coefficients are 2.934–3.059 × 10-6/°C (25–300 °C), compressive strengths are 417–589 MPa, bending strengths are 141–259 MPa, Vickers hardnesses are 6.8–7.8 GPa, and strain points are approximately 735 °C. Considering these properties, the prepared GC/6–GC/9 glass-ceramics have good potential as candidate materials for alkali-free glass substrates. Additionally, these results demonstrate that it is feasible to improve the properties of alkali-free glass substrates by nucleation–crystallization.  相似文献   

10.
Infusion of antioxidants into vegetables is a new food strategy managed by matrix processing. Raw and blanched apple were air- or freeze-dried. In the case of freeze-dried samples, different freezing methods were previously applied: conventional (?28°C), blast freezing (?30°C), and liquid N2 (?196°C). Afterwards, air- and freeze-dried samples at different conditions were impregnated with a concentrated (40°Brix) tea extract and finally, air-dried for their stabilization. Total phenolic content (TPC), antioxidant capacity (AC), enzymatic activity, and microstructure were analyzed. Regardless of pretreatments, the impregnation and the further drying improved the antioxidant potential. Samples with the most porous microstructure free of degradative enzymes provided high AC (78.5?±?0.9?mg Trolox/g dried matter) and TPC (16.7?±?0.2?mg GAE/g dried matter).  相似文献   

11.
A varistor having ultra-high performance was developed from doped ZnO nanopowders using a novel composition consisting of only three (Bi, Ca and Co oxides) dopants. Improved varistor properties were obtained (breakdown field (Eb) 27.5?±?5?kVcm?1, coefficient of nonlinearity (α) 72?±?3 and leakage current density (Lc) 1.5?±?0.06?μAcm?2) which are attributed to the small grain size and grain boundary engineering by phases such as Ca4Bi6O13 and Ca0.89Bi3.11O5.56 along with Co+2 doping in the ZnO lattice. Complex impedance data indicated three relaxations at 25?°C and two relaxations at high temperature (>100?°C). The complex impedance data were fitted into two parallel RC model to extract electrical properties. Two stages of activation energy for DC conductivity were observed in these varistor samples where region I (<150?°C) is found to be due to shallow traps and region II (<225?°C) is due to deep traps. The novel composition is useful for commercial exploitation in wide range of surge protection applications.  相似文献   

12.
The microstructural development during crystallization firing of a commercially-available dental-grade nanostructured lithia-zirconia glass-ceramic (Vita Suprinity® PC) was unraveled using a wide battery of ex-situ and in-situ characterization techniques. It was found that the milling blocks are slightly crystallized glass-ceramics, with a complex chemical composition and consisting of partially de-polymerized glass plus lithium silicate (Li2SiO3) nanocrystals. It was also found that during crystallization firing the glassy matrix first reacts with part of the Li2SiO3 to form lithium disilicate (Li2Si2O5) at ~810?820 °C, and then lithium orthophosphate (Li3PO4) precipitates from the glass. This results in glass-ceramics with abundant nanocrystals embedded in a sparse zirconosilicate glass matrix (containing many other cations subsumed) that, due to its high viscosity, inhibited crystal growth. Therefore, these dental glass-ceramics are not reinforced with zirconia (ZrO2) crystals unless over-fired above ~890 °C and at the expense of its singular nanostructure. Finally, this study opens doors for optimizing the clinical performance of these dental glass-ceramics via microstructural tailoring.  相似文献   

13.
《Ceramics International》2023,49(16):26934-26942
The bottom ash (OIBA) generated from the incineration of hazardous oil sludge is classified as a hazardous waste. In this work, the OIBA was applied as raw material to prepare SiO2-Al2O3-CaO system glass-ceramics by melt-sintering with the addition of waste glass wool (GW). The effects of basicity (CaO/SiO2 ratio, 0.52-1.05) and sintering temperature (900–1050 °C) on the crystallization kinetics, properties, microstructure, leaching concentrations of heavy metals and potential toxicity of glass-ceramics were investigated. The results showed that the crystallization pattern was two-dimensional crystallization, and with the decrease of basicity, the main crystalline phase evolved from gehlenite to diopside. And the glass-ceramics with basicity of 0.88 and sintering temperature of 950 °C exhibited the best comprehensive properties, including density (2.72 g/cm3), water absorption (0.06%), compressive strength (452.45 MPa) and chemical corrosion resistance. In addition, the reduction of heavy metal leaching concentration indicates that produced glass-ceramics showed excellent solidification effect on heavy metals, the low toxicity of glass-ceramics leaching solution to the wheat seeds and Artemia suggests the environmental protection characteristics of OIBA-based glass-ceramics. These findings proved that the glass-ceramics produced by OIBA and GW could be a promising method to dispose hazardous waste with preparing high value-added construction materials.  相似文献   

14.
This study evaluated the effect of air-abrasion protocols on the topography, surface wettability and adhesion of resin cement to zirconia. Ceramic specimens (N?=?49; n?=?7) (15?mm × 2?mm) were randomly allocated to seven groups to be treated with: (1) Air-abrasion with 45?μm Al2O3 (A45), (2) 80?μm Al2O3 (A80), (3) 30?μm Al2O3 coated with SiO2 (CoJet) (C30), (4) 30?μm Al2O3 coated with SiO2 (Rocatec Soft) (R30), (5) 110?μm Al2O3 coated with SiO2 (Rocatec Plus) (R110); (6) R110R30 (Rocatec) (R110R30) and (7) control, no conditioning (NC). Air-abrasion was performed using a chairside air-abrasion device (2.5?bar, 10?mm, 90?s). Contact angle measurements were performed using goniometry (n?=?5). MDP-based dual resin cement (Panavia F2.0) was bonded on four locations after air-abrasion protocols (n?=?20 per group). Half of the specimens were tested after 24?h and the other half after thermal cycling (×3000, 5–55?°C). Data were analyzed using 1-, 2-way ANOVA and Tukey’s test (alpha = 0.05). Significantly lower contact angle values were observed for groups C30 (62.6?±?0.91), R30 (61.91?±?1.05) and R110R30 (61.54?±?1.02) compared to those of other groups (65.5?±?0.9–110.61?±?0.9) (p?<?0.05). In dry conditions, surface conditioning methods tested did not show significant effect on bond strength (MPa) (10.57?±?1.42–16.86?±?2.54) (p?=?0.238). After thermocycling, bond strength results decreased significantly (p?<?0.05) (12.6–51.2%). R110 (7.18?±?1.34) and A80 (4.92?±?1.53) showed significantly higher bond strength compared to other groups (2.13?±?0.73–4.16?±?1.34) (p?<?0.05). The best wettability and adhesion results with MDP-based resin cement to zirconia was achieved with A80 and R110 air-abrasion.  相似文献   

15.
CaO–MgO–Al2O3–SiO2 (CMAS) glass was prepared by float process. The effects of TiO2 and heat-treatment on properties and crystallization behaviors of float glasses were investigated by atomic force microscope, differential scanning calorimeter, X-ray diffraction, electron probe microanalyzer, field emission scanning electron microscope and viscosity test. The results showed that CMAS parent glasses produced by float process had a high surface flatness (Ra is less than 80.1 ± 0.1 nm) and low tin penetration (14 μm). When the concentration of TiO2 increased from 3.51 to 5.01 wt %, the glass transition temperature was decreased, and the crystallization temperature was shifted from 913 to 887°C using differential scanning calorimeter. Field emission scanning electron microscope images showed that phase separation was discovered in CMAS parent glass (containing 3.51 wt % TiO2) treated at 670°C. Diopside as a major crystalline phase was precipitated in CMAS glass-ceramics nucleated at 700°C for 30 min and followed by crystallization at 910°C for 30 min.  相似文献   

16.
《Ceramics International》2022,48(14):20053-20061
The composition governs the crystallization ability, the type and content of crystal phases of glass-ceramics. Glass-ceramic joining materials have generated more research interest in recent years. Here, we prepared a novel Li2O–MgO–Al2O3–SiO2 glass-ceramic for the application of joining Si3N4 ceramics. We investigated the influence of the MgO/Al2O3 composition ratio on microstructure and crystallization behaviour. The crystallization kinetics demonstrated that the glasses had excellent crystallization ability and high crystallinity. β-LiAlSi2O6 and Mg2SiO4 were precipitated from the glass-ceramics, and the increase of MgO concentration was conducive to the precipitation of Mg2SiO4. Among the glass-ceramic samples, the thermal expansion coefficient of LMAS2 glass-ceramic was 3.1 × 10?6/°C, which was very close to that of Si3N4 ceramics. The wetting test showed that the final contact angle of the glass droplet on the Si3N4 ceramic surface was 32° and the interface was well bonded.  相似文献   

17.
Biodegradable solid polymer electrolyte (SPE) systems composed of hydroxylethyl cellulose blended with copper(II) oxide (CuO) and yttrium(III) oxide (Y2O3) nanoparticles as fillers, magnesium trifluoromethane sulfonate salt, and 1‐ethyl‐3‐methylimidazolium trifluoromethane sulfonate ionic liquid were prepared, and the effects of the incorporation of CuO and Y2O3 nanoparticles on the performance of the SPEs for electric double‐layer capacitors (EDLCs) were compared. The X‐ray diffraction results reveal that the crystallinity of the SPE complex decreased upon inclusion of the Y2O3 nanoparticles compared to CuO nanoparticles; this led to a higher ionic conductivity of the Y2O3‐based SPE [(3.08 ± 0.01) × 10?4 S/cm] as compared to CuO [(2.03 ± 0.01) × 10?4 S/cm]. The EDLC performances demonstrated that the cell based on CuO nanoparticles had superior performance in terms of the specific capacitance, energy, and power density compared to the Y2O3‐nanoparticle‐based cell. However, Y2O3‐nanoparticle‐based cell displayed a high cyclic retention (91.32%) compared to the CuO‐nanoparticle‐based cell (80.46%) after 3000 charge–discharge cycles. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44636.  相似文献   

18.
The formation energetics of hydrous and dehydrated potassium hexaniobates are investigated using high‐temperature oxide melt solution calorimetry. The enthalpies of formation of K4Nb6O17 and K4Nb6O17·3H2O from oxides are (?864.42 ± 10.63) and (?899.32 ± 11.48) kJ/mol, respectively. The formation enthalpy of K4Nb6O17 from elements is (?7289.64 ± 12.50) kJ/mol, and of K4Nb6O17·3H2O is (?8181.94 ± 13.24) kJ/mol. The enthalpy of dehydration (ΔHdehy) for the reaction K4Nb6O17·3H2O (xl, 25°C) = K4Nb6O17 (xl, 25°C) + 3H2O (l, 25°C) is endothermic and is 34.60 ± 7.56 kJ/mol. The ΔHdehy per mole of water, 11.53 ± 2.52 kJ/mol, indicates the water molecules in K4Nb6O17·3H2O are not just physically adsorbed, but loosely bonded in the K4Nb6O17 phase, presumably in specific interlayer sites. The loss of this water near 100°C on heating is consistent with the weak bonding of water.  相似文献   

19.
Novel glass-ceramics of the nominal molar compositions 20Fe2O3·20B2O3·(60-x)V2O5· (xNa2O or xSrO) (where x?=?0 or 10) were prepared by traditional melt technique. Differential thermal analysis (DTA) was implemented to study the thermal behavior of the prepared glasses. Vanadium pentoxide (V2O5), iron vanadate (FeVO4), sodium vanadate (Na3VO4) and strontium vanadate (with different formulae) were crystallized and identified by X-ray diffraction (XRD) analysis under certain conditions of heat-treatment. Further characterization of glass and glass ceramics samples were performed using scanning electron microscope (SEM), density, electrical and dielectric measurements. In conclusion, our study elucidated that the substitution of vanadium by Na+ and Sr2+ ions enhanced the conductivity at 180?°C from 5.11?×?10?4 for unmodified glass to 2.93?×?10?3 and 1.03?×?10?2?S?cm?1 for Na- and Sr-modified glasses.  相似文献   

20.
A solid waste from a zinc electroplating production line was successfully used as a main raw material for synthesizing glass-ceramics with a fine microstructure. X-ray fluorescence spectroscopy analysis on dried solid waste shows that the waste mainly contains iron and zinc oxides. X-ray diffraction (XRD) analysis identifies Fe3O4 and ZnO phases in calcined waste samples. Based on the above results, silica sand, lime stone and potassium feldspar were proportionally added to make parent glasses by melting the batches at 1450?°C for 2?h. The as-synthesized products show typical DSC and thermal expansion curves with obvious glass transition phenomenon. However, XRD patterns reveal that they had devitrified to form ZnFe2O4 phase during the shaping and cooling of the melts. The devitrification became weaker when more potassium feldspar was added. It is interesting to find that the pre-crystallization of ZnFe2O4 in the devitrified sample was beneficial to its further crystallization during the following heat-treatment. The result implies that the devitrification of parent glasses is not necessarily a detriment to the preparation of glass-ceramics via controlled crystallization process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号