首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AlNbO_4,as lithium-ion batteries(LIBs) anode,has a high theoretical capacity of 291.5 m Ah g~(-1).Here,AlNbO_4 anode materials were synthesized through a simple solid-state method.The structure,morphology and electrochemical performances of AlNbO_4 anode were systematically investigated.The results show that AlNbO_4 is monoclinic with C2/m space group.The scanning electron microscopy(SEM) and transmission electron microscopy(TEM) characterizations reveal the AlNbO_4 particles with the size of 100 nm~(–2) lm.As a lithium-ion batteries anode,AlNbO_4 delivers a high reversible capacity and good rate capability.The discharge capacity is as high as 151.0 m Ah g~(-1)after 50 charge and discharge cycles at 0.1 C corresponding to capacity retention of 90.7 %.When the current density increases to 5.0C,AlNbO_4 anode displays reversible discharge capacity of 73.6 m Ah g~(-1)at the50 th cycle.  相似文献   

2.
Surface oxidation of Fe–6Si during annealing in low-pressure air (~10Pa) in the temperature range 500–550 °C was investigated using resistivity measurements, Mössbauer spectroscopy, X-ray diffraction and scanning-electron microscopy (SEM). The time dependence of the resistivity exhibits an increase in two steps, which indicates changes in the structure and/or phase composition of the alloy. Structure and phase investigations show that the first step can be explained as formation of hematite (α-Fe2O3) and the second step is due to transformation of the hematite to magnetite (Fe3O4). The kinetics of the transformations were derived from the resistivity data. The activation energies (estimated from Arrhenius plots) of 194 kJ/mol and 165 kJ/mol were obtained for the formation of hematite and transformation of hematite to magnetite, respectively.  相似文献   

3.
A series of FeCo-based thin films were prepared by magnetron sputtering without applying an induced magnetic field.The microstructure,electrical properties,magnetic properties and thermal stability of FeCo,FeCoSiN monolayer thin film and[FeCoSiN/SiN_x]_n multilayer thin film were investigated systematically.When FeCo thin film was doped with Si and N,the resistivity and soft magnetic properties of the obtained FeCoSiN thin film can be improved effectively.The coercivity(H_c),resistivity(ρ) and ferromagnetic resonance frequency(f_r) can be further optimized for the[FeCoSiN/SiN_x]_n multilayer thin film.When the thickness of FeCoSiN layer and SiN_x layer is maintained at 7 and 2 nm,the H_c,p and f_r for[FeCoSiN/SiN_x]_n multilayer thin film are 225 A·m~(-1)392 μΩ·cm~(-1) and 4.29 GHz,respectively.In addition,the low coercivity of easy axis(H_(ce) ≈ 506 A·m~(-1)) of[FeCoSiN/SiN_x]_n multilayer thin film can be maintained after annealing at 300 ℃ in air for 2 h.  相似文献   

4.
ZnO/Cu/ZnO transparent conductive thin films were prepared by RF sputtering deposition of ZnO target and DC sputtering deposition of Cu target on n-type (001) Si and glass substrates at room temperature. The morphology, structure, optical, and electrical properties of the multilayer films were characterized by field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), UV/Vis spectrophotometer, and Hall effect measurement system. The influence of Cu layer thickness and the oxygen pressure in sputtering atmosphere on the film properties were studied. ZnO/Cu/ZnO transparent conductive film fabricated in pure Ar atmosphere with 10 nm Cu layer thickness has the best performance: resistivity of 2.3×10-4 Ω·cm, carrier concentration of 6.44×1016cm-2 , mobility of 4.51cm2·(V·s)-1 , and acceptable average transmittance of 80 % in the visible range. The transmittance and conductivity of the films fabricated with oxygen are lower than those of the films fabricated without oxygen, which indicates that oxygen atmosphere does not improve the optical and electrical properties of ZnO/Cu/ ZnO films.  相似文献   

5.
This study was pertained to the effects of Ti coating on diamond surfaces and Si addition into Al matrix on the thermal conductivity(TC) and the coefficient of thermal expansion(CTE) of diamond/Al composites by pressure infiltration.The fracture surfaces,interface microstructures by metal electro-etching and interfacial thermal conductance of the composites prepared by two methods were compared.The results reveal that Ti coating on diamond surfaces and only12.2 wt% Si addition into Al matrix could both improve the interfacial bonding and increase the TCs of the composites.But the Ti coating layer introduces more interfacial thermal barrier at the diamond/Al interface compared to adding 12.2 wt% Si into Al matrix.The diamond/Al composite with 12.2 wt% Si addition exhibits maximum TC of 534 W·m~(-1)·K~(-1)and a very low CTE of 8.9×10~(-6)K~(-1),while the coating Ti-diamond/Al composite has a TC of 514 W·m~(-1)·K~(-1)and a CTE of 11.0×10~(-6)K~(-1).  相似文献   

6.
Zirconium-cordierite ceramic composites have been synthesized by a co-precipitation method using MgCl2·6H2O, NaAlO2, Na2SiO3·5H2O, and ZrOCl2·8H2O as starting materials. XRD, FT-IR, and SEM techniques were employed to study the effect of zirconium on the crystal structure and microstructure of the samples. XRD results revealed that spinel MgAl2O4 and t-ZrO2 phases were predominant in the samples with low Zr4+ content (10 wt.%), whereas zircon ZrSiO4 was predominant with high Zr4+ content (≥15 wt.%). The densification behavior was improved from 30.4 to 44.6% of the theoretical density (2.6 g/cm3) at 15 wt.% of Zr4+. However, microhardness of the sintered samples was enhanced from 7.1 to 7.5 GPa with increasing the Zr4+ dose from 0 to 25 wt.%. On the other hand, the gradual increase in Zr4+ content from 0 to 25 wt.% led to suppression in the electrical resistivity (ρ) from 16.6 to 2.8 × 109 Ω/cm, respectively. In addition, the dielectric permittivity (ε) of the pure cordierite was decreased with Zr4+ ion addition. The maximum dielectric permittivity (ε) at low frequencies (10 MHz) was 18.7 at 10 wt.% Zr4+ content, whereas at high frequencies (1 GHz) it was 38.8 at 15 wt.% Zr4+ content.  相似文献   

7.
In the present paper, the aging precipitation and coarsening of disk-like δ-Ni2Si particles in Cu and Cu-10Zn alloys aged at 450 °C have been investigated by hardness, electric resistivity measurement and transmission electron microscopy observation. The coarsening dynamics of the average diameter of the δ-Ni2Si particles coincides with the t 1/3 time law for both alloys. The coarsening of the diminution of supersaturation related to aging time t coincides with the t ?1/3 time rule. Adding Zn to the Cu-Ni-Si alloy increases the growth and coarsening rate of the particles mainly because of the increased diffusivity D of the δ-Ni2Si particles in the matrix. The value of D of the δ-Ni2Si particles in the Cu-xZn (x = 0, 10 wt.%) matrix and the Cu/δ-Ni2Si interfacial energy γ are independently calculated by using the Lifshitz–Slyozov–Wagner theory which was extended to include disk-like particles by Boyd and Nicholson. The values of D and γ increase from 0.77 × 10?19 to 2.21 × 10?19 m2/s and 0.19 to 0.63 J/m2, respectively, when Zn is added to the Cu-Ni-Si alloy. These calculations and the analysis show that the properties of Cu-Ni-Si-Zn alloy can significantly be enhanced by reducing the aging temperature.  相似文献   

8.
In this work, effect of alloying elements (X = Cu, Co, Ni, Sb and Bi) and growth rates on the microstructure, physical properties (electrical resistivity, enthalpy and specific heat) of the directionally solidified Al–Si eutectic alloy have been investigated. Al–12.6Si–2X (wt. %) samples were prepared using metals of 99.99% high purity in the vacuum atmosphere. These alloys were directionally solidified under constant temperature gradient, G (7.80 K/mm) and different growth rates, V (8.3–166.0 μm/s). Flake spacing (λ) and electrical resistivity (ρ) were measured from the solidified samples. The variation of electrical resistivity with temperature in the range of 300–500 K for alloying elements in the Al–Si eutectic cast alloy was also measured. The enthalpy of fusion (ΔH) and specific heat (Cp) for the same alloy were determined by a differential scanning calorimeter from the heating curve during the transformation from solid to liquid.  相似文献   

9.
熔盐电解精炼提纯金属硅(英文)   总被引:1,自引:0,他引:1  
对熔盐电解质中硅的沉积过程进行电化学研究。在 973~223K,在硅氯化物熔盐中采用电解精炼提纯金属硅。结果表明,液态硅铜合金阳极有利于 CaCl2-NaCl-CaO-Si 熔盐体系的电解精炼。ICP-AES 分析结果显示,通过电解精炼可有效去除原料中大量的钛、铝、铁等金属杂质,硅中的硼和磷含量分别由 36×106和 25×106降低至 4.6×10 6和 2.8×10 6,电解能耗约为 9.3 kW·h/kg。  相似文献   

10.
《Synthetic Metals》2004,141(3):245-249
A novel blue-light-emitting material, 2,3,6,7-tetramethyl-9,10-dinaphthyl-anthracene (TMADN), was synthesized and characterized. Organic light-emitting diode (OLED), which has a double-layer structure, has been fabricated. In this OLED, the homemade TMADN was used as the light-emitting material and 4,7-diphenyl-1,10-phenanthroline (DPA) was used as the hole blocking/electron transporting material, N,N′-biphenyl-N,N′-bis-(1-naphenyl)-[1,1′-biphenyl]-4,4′-diamine (NPB) was used as the hole transporting material. The peak emission of electroluminescence (EL) is at about 456 nm and the CIE coordinates are (0.171, 0.228). The brightness of the device is up to 5600 cd/m2 at 17 V with the maximum EL efficiency of 2.2 cd/A.  相似文献   

11.
Al doped zinc oxide (AZO) films, deposited by atomic layer deposition (ALD) were investigated for applying a transparent conductive oxide (TCO) layer as an anode for organic light emitting diode (OLED) devices. AZO films with a thickness of 100 nm were deposited at various Al atomic ratios ranging from 0 to 5% at a deposition temperature (250 °C). The optimum electrical properties: the carrier mobility, the resistivity, and the sheet resistance for the 2% AZO film were found to be 16.2 cm2 V?1 s?1, 1.5 × 10?3 cm?3, and 217 Ω/sq, respectively. The red OLED devices were fabricated using AZO anodes utilizing the various Al atomic ratios; the electrical and optical characteristics were then investigated. The best luminance, quantum efficiency, and current efficiency were found in the OLED device using the 2% AZO TCO; the results were 16599 cd/m2, 8.2%, and 7.5 cd/A, respectively.  相似文献   

12.
Si-based ceramics (e.g., SiC and Si3N4) are known as promising high-temperature structural materials in various components where metals/alloys reached their ultimate performances (e.g., advanced gas turbine engines and structural components of future hypersonic vehicles). To alleviate the surface recession that Si-based ceramics undergo in a high-temperature environmental attack (e.g., H2O vapor), appropriate refractory oxides are engineered to serve as environmental barrier coatings (EBCs). The current state-of-the-art EBCs multilayer system comprises a silicon (Si) bond coat, mullite (3Al2O3·2SiO2) interlayer and (1 ? x)BaO·xSrO·Al2O3·2SiO2, 0 ?? x ?? 1 (BSAS) top coat. In this article, the role of high-temperature exposure (1300 °C) performed in H2O vapor environment (for time intervals up to 500 h) on the elastic moduli of air plasma sprayed Si/mullite/BSAS layers deposited on SiC substrates was investigated via depth-sensing indentation. Laser-ultrasonics was employed to evaluate the E values of as-sprayed BSAS coatings as an attempt to validate the indentation results. Fully crystalline, crack-free, and near-crack-free as-sprayed EBCs were engineered under controlled deposition conditions. The absence of phase transformation and stability of the low elastic modulus values (e.g., ~60-70 GPa) retained by the BSAS top layers after harsh environmental exposure provides a plausible explanation for the almost crack-free coatings observed. The relationships between the measured elastic moduli of the EBCs and their microstructural behavior during the high-temperature exposure are discussed.  相似文献   

13.
A new approach was developed to successfully load Mg into the nanometre-sized pores of an anodic aluminium oxide(AAO) template for realizing the nano-confinement of Mg. Structural characterization shows that Mg nano-particles are nucleated along the AAO pipe wall together with the formation of MgO and Mg_(17)Al_(12) as byproducts. The flow rate of argon gas, the temperature of the AAO template and the transporting distance between the Mg vapour source and the AAO template were optimized to achieve the confinement of Mg nano-particles with larger loading rate. Under optimized deposition conditions, the particle size of the loaded Mg is less than 100 nm and the effective filling factor is about 35 wt%. The confined Mg/MgH_2 even after 10 de-/hydrogenation cycles still shows favourable kinetics. Furthermore, the slight reduction in hydrogen desorption enthalpy and entropy of MgH_2 from(74.42 ± 0.12) to(73.21 ± 0.04) k Jámol~(-1) and(130.98 ±0.05) to(130.11 ± 0.24) Jámol~(-1)áK~(-1) is also found in the present nano-confinement.  相似文献   

14.
《Synthetic Metals》2004,140(1):101-104
Organic light-emitting diodes emitting in the range of 400 nm (violet) to 460 nm (blue) are reported. The basic device structure consists of indium–tin oxide/N,N′-diphenyl-N,N′-bis-(3-methylphenyl)-1,1′-biphenyl-4,4′-diamine (TPD)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP)/lithium fluoride (LiF)/aluminum. Offset of the energy levels at the TPD/BCP interface favors blocking of holes on the TPD side of the interface. Voltage-induced color change is observed and explained in terms of a switching from emission dominated by interfacial exciplex-induced recombination at low applied bias to one dominated by bulk exciton-induced recombination at high applied bias. With the addition of copper(II) phthalocyanine (CuPc) as an anode buffer layer and tris-8-(hydroxyquinoline) aluminum (Alq3) as a cathode buffer layer, external quantum efficiencies as high as 0.5% at blue emission and 0.4% at violet emission have been obtained.  相似文献   

15.
In this study, suspension plasma spraying (SPS) was applied to deposit double perovskite Sr2Fe1.4Mo0.6O6?δ (SFM) which can be used as both cathode and anode for solid oxide fuel cells. The effects of SFM concentration on the electrode phase composition, microstructure, and catalytic performance were investigated. The electrodes showed a dense structure when it was deposited at a concentration of 0.05 mol/L. The cathode performance was limited by the limited three-phase boundaries and poor gas diffusion. At 750 °C, cathode polarization (R pc) was 0.19 Ω cm2. When the SFM concentration increased to 0.075 mol/L, the deposits revealed a porous microstructure with well-bonded fine particles. As a result, the Rpc decreased significantly to 0.078 Ω cm2 at 750 °C. However, when the SFM concentration was further increased to 0.1 mol/L, the R pc increased owing to the limited interface bonding between the non-molten particles. As a result, it was found that the SFM suspension concentration should be optimized to achieve a highly active SFM by SPS process. Moreover, when the optimized deposit was employed as an anode and tested in a hydrogen atmosphere, it showed anode polarization resistance (Rpa) of 1.5 Ω cm2 at 750 °C.  相似文献   

16.
Li  Xiao-cong  Liang  Hui  Zhao  Yan-zhou  Gao  Li  Jiang  Li  Cao  Zhi-qiang 《中国铸造》2022,19(6):473-480

In recent years, the coating prepared by laser cladding has attracted much attention in the field of wear research. In this work, AlCrFeNiMo0.5Six (x=0, 0.5, 1.0, 1.5, 2.0) high-entropy alloy coatings were designed and prepared on Q235 steel by laser cladding. The effect of Si content on microstructure, microhardness and wear resistance of the coatings was studied in detail. The results indicate that the AlCrFeNiMo0.5Six high-entropy alloy coatings show an excellent bonding between substrate and the cladding layer. The AlCrFeNiMo0.5Six coatings are composed of nano-precipitated phase with BCC structure and matrix with ordered B2 structure. With the addition of Si, the white phase (Cr, Mo)3Si with cubic structure appears in the interdendritic, and the morphology of the coating (x=2.0) transforms into lamellar eutectic-like structures. The addition of Si enhances the microhardness and significantly improves the wear resistance of the coatings. As x increases from 0 to 2.0, the average hardness of the cladding zone increases from 632 HV to 835 HV, and the wear rate decreases from 1.64×10−5 mm3·(N·m)−1 to 5.13×10−6 mm3·(N·m)−1. When x≥1.5, the decreasing trend of the wear rate gradually slows down. The wear rates of Si1.5 and Si2.0 coatings are 5.85×10−6 mm3·(N·m)−1 and 5.13×10−6 mm3·(N·m)−1, respectively, which is an order of magnitude lower than that of Q235 steel.

  相似文献   

17.
Supersonic spray coating techniques were applied to deposit ceramic and clay particles as films for use in electrical insulation. TiO2 and Al2O3 ceramics were aerosol-deposited under vacuum while kaolinite, montmorillonite, and bentonite clays were deposited by cold spraying in open air. The electrical resistivity of Al2O3 and TiO2 were ~109 and ~108 Ω cm, respectively. The resistivity of kaolinite and montmorillonite were ~1012 Ω cm. Bentonite showed the lowest electrical resistivity of ~109 Ω cm among the clays because of the high cation exchange capacity of the material. The film surface morphologies and mechanical properties in the form of hardness and scratchability were also investigated.  相似文献   

18.
Si-based anode composite materials have been studied to improve the performance and the durability of Li-ion secondary batteries in this study. Si-Ni-Al, Si-Ni-Cu and Si-Ni-Cu-Al base alloys were designed and rapidly solidified at the cooling rate of about 106 °C/sec by optimizing the melt spinning. The ribbons were characterized using FE-SEM equipped with EDS, X-ray diffractometer and HR-TEM. The thin ribbons of Si-Ni-Al alloy consisted of nano-sized Si particles and amorphous matrix, which was regarded as an ideal microstructure for the anode material. At the wheel side of the ribbon, 20–30 nm of Si particles were formed (Zone A); whereas at the air side relatively large Si particles were distributed (Zone B). The Si-Ni-Cu alloy showed coarser Si particles than the Si-Ni-Al alloy, and its matrix consisted of NiSi2, Cu3Si and amorphous structures. Finally, the microstructure of the Si-Ni-Cu-Al alloy strips was composed of coarse Si particles, CuNi, Al4Cu9, NiSi2, and unknown phases, and the size of those Si particles were too large to be used for the anode materials.  相似文献   

19.
AlN films were prepared on Si(100) and quartz glass substrates with high deposition rate of 30 nm·min~(-1) at the temperature of below 85℃ by the magnetic-filtered cathodic arc ion plating(FCAIP) method. The as-deposited AlN films show very smooth surface and almost no macrodroplets. The films are in amorphous state, and the formation of AlN is confirmed by N1s and Al2p X-ray photoelectron spectroscopy(XPS). The XPS depth profile analysis shows that oxygen is mainly absorbed on the AlN surface. The AlN film has Al and N concentrations close to the stoichiometric ratio with a small amount of Al_2O_3. The prepared AlN films are highly transparent over the wave-length range of 210–990 nm. The optical transmission spectrum reveals the bandgap of 6.1 eV. The present technique provides a good approach to prepare large-scale AlN films with controlled structure and good optical properties at low temperature.  相似文献   

20.
Installing linear anode loops around a buried vessel is one of the latest cathodic protection anode arrangements for buried vessels. In this arrangement, besides the physical properties of the environment, for example, soil resistivity and oxygen content, the distance of anode loops to the vessel, number of anode loops, and distance between each loop are three main designing parameters. In the present study, the cathodic protection of a buried vessel (8-m long; 2.5 m in diameter) with complete nonlinear polarization at the protected surface is studied with finite element method simulation. The analyzed variables are the number of anode loops from one to three, the anode-to-vessel distance from 0.2 to 0.6 m, the distance between loops from 0.2 to 1.6 m. Soil resistivity varies from 10 to 500 Ω·m, and oxygen limiting current density changes from 5 to 100 mA/m2. Increasing anode-to-vessel distances will reduce the potential differences, and the best condition is the maximum distance, 0.6 m. The optimum number of anode loops is two. Increasing soil resistivity will increase the potential difference, but in an optimum design, its effect is not significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号