首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 328 毫秒
1.
本文以11 C-Triflate-CH3为甲基化试剂,使用国产模块PET-CM-3H-IT-I合成11 C标记化合物雷氯必利(11 C-Raclopride),研究其合成过程中的碱量、溶剂、反应温度、前体量及产品淋洗条件对合成效率的影响,优化11 C-Raclopride的合成条件。优化后的合成条件为:以0.2mL丙酮为溶剂,前体浓度1.5~3.0g/L,反应温度为室温(25℃),碱量0.30~1.25eq,11 C-Raclopride的合成效率(64.82±4.74)%(n=46,以11 C-Triflate-CH3计校正效率),产品的放化纯度大于97%,比活度为(423.61±13.43)GBq/g,从收集11 C-CO2至得到11 C-Raclopride终产品的总合成时间为23 min,产量(6.9±0.87)GBq(n=46)。通过优化合成工艺,实现了稳定性和重复性良好的全自动化合成11C-Raclopride,且产品满足临床使用需要。  相似文献   

2.
为制备满足临床应用需要的~(11)C-氟马西尼,以~(11)C-CH3I为甲基化试剂,使用国产PET-CM-3H-IT-I型模块对~(11)C-氟马西尼的制备及纯化方法进行改进。用液相法合成~(11)C-CH3I,研究反应溶剂、碱性强度、碱量、反应温度对合成效率的影响,优化~(11)C-氟马西尼的合成条件。优化后的条件为:先将~(11)C-CH3I在室温下通入含1mg去甲基氟马西尼前体和1mg氢化钠的200μL DMF溶液中,加热至55℃恒温反应2min。反应物经半制备HPLC分离收集粗产品,再经SEP-PAK C-18柱固相萃取,对产品质量进行分析。结果表明,以捕获~(11)C-CO2计算,~(11)C-氟马西尼合成时间为(26±2)min,经衰减校正后放化产率为(45±4)%(n=10),产品放化纯度大于99%,放射性浓度为370~550 MBq/mL,比活度为4.7TBq/mmol,产品细菌和热源检测结果符合规定。通过优化反应条件,大幅度提高了标记率,用国产合成模块能够制备高质量、高比活度的~(11)C-氟马西尼,满足临床应用需求。  相似文献   

3.
《同位素》2018,(5)
本文以~(11)C-Triflate-CH3为甲基化试剂合成多巴胺转运蛋白显像剂~(11)C-β-CFT,探讨~(11)C-β-CFT合成效率的影响因素,优化合成条件,提高其合成效率。使用国产合成模块PET-CM-3H-IT-Ⅰ全自动化合成~(11)C-β-CFT,通过研究合成过程中反应溶剂、轰靶时间、前体量及淋洗终产品条件等影响因素,得到优化后~(11)C-β-CFT的生产条件:轰靶时长10~24 min,前体浓度为0.5~1.0g/L,以0.2 mL体积比V(丙酮)∶V(乙腈)=1∶1为溶剂,反应条件为室温。从传输~(11)C-CO2到终产品的总合成时间为16min,产量为(8.07±1.94)GBq(n=76);此条件下~(11)C-β-CFT的合成效率为(76.93±6.49)%(n=76,~(11)CTriflate-CH3校正效率),产品的放化纯度大于97%,比活度(56.26±1.55)TBq/g。优化后的生产条件可以提高~(11)C-β-CFT合成效率,解决了Sep-Pak C18柱残留产品过多的问题,可实现稳定、全自动化合成~(11)C-β-CFT且保证产品满足临床需求。  相似文献   

4.
采用附接半制备HPLC的国产FDG模块自动化合成了3’-脱氧-3’-[18F]氟代胸(腺嘧啶脱氧核)苷(18F-FLT)。将15 mg 3-N-Boc-5’-O-二甲氧基三苯基-3’-O-nosyl-胸苷溶解在0.5 mL DMSO中,使之与18F-在100 ℃反应5 min,之后用1 mol/L HCl 于110 ℃下水解5 min,用2 mol/L NaOH中和;TLC法测得18F-FLT的标记率为 67.5%(n=8),而 HPLC测得的标记率为39.4% (n=6);产品经半制备HPLC分离纯化,最终产品的合成效率为21.2%(n=3,不衰减校正),包括半制备HPLC的分离纯化在内,总的合成时间为30 min。产品的放化纯度大于99%,比活度大于 740 TBq/g(180 PBq/mol)。产品在10%乙醇中,6 h内未见分解。以上结果表明,国产FDG模块配合半制备HPLC,可以合成满足临床需求的18F-FLT。  相似文献   

5.
在线制备11C-Triflate-CH3   总被引:2,自引:2,他引:2  
采用在线装置将11C-CH3I转化成11C-Triflate-CH3,并利用两者脂溶性的区别,用HPLC方法分析转化效率和放化纯度。该方法在线转化效率大于95%,转化效率与温度有关,与气流无关(20~80 mL/min)。11C-Triflate-CH3标记受体类药物标记率明显高于11C-CH3I。一次装入该转换装置的试剂平均使用次数超过120次  相似文献   

6.
采用国产碳-11多功能合成模块,研究全自动化合成11 C-乙酸盐的工艺流程。用0.1mL 1.5mol/L的溴化甲基镁在Loop环中与11 C-CO2反应生成中间体乙酰溴化镁,中间体由乙酸水解,再经纯化、洗脱、盐酸酸化,通入氮气除去未反应的11 C-CO2,以磷酸三钠中和后过无菌滤膜得11 C-乙酸盐注射液。总合成时间约为10min,校正放化产率为(58.5±6.7)%,放化纯度大于99%。使用气相色谱仪测得产品中有机溶剂丙酮和乙腈的残留浓度分别为(0.007±0.002)%和(0.005±0.002)%。整个合成过程实现全自动化,操作简单、灵活,合成产率和放化纯度较高,可以满足临床使用需求。  相似文献   

7.
程亮  陈尚东  崔夫新  刘丹  何爽  朴永男 《同位素》2020,(2):110-116,I0003
采用CFN-MPS200多功能合成模块分别进行11C-乙酸盐(11C-Acetate)和18F-乙酸盐(18F-Acatate)合成,并用TLC法和HPLC法进行质量分析。将11CO2释放到1.0 mol/L甲基溴化镁的四氢呋喃溶液中,2 min后用1 mol/L盐酸水解,反应液经ON Guard-Ag、ON Guard-H柱纯化后,再经PS-OH柱吸附,用生理盐水淋洗,最后由CM柱纯化并经无菌滤膜过滤得到11C-乙酸盐;合成时间约为10 min,不校正放化合成产率(53.5±5)%(n=6)。18F-与溴代乙酸苄酯发生取代反应,经C-18柱吸附去除杂质后洗脱,碱水解后经IC-H、PS-2、氧化铝柱纯化后通过无菌滤膜得到产品18F-乙酸盐;合成时间为40 min,不校正放化合成产率(20.2±5)%(n=5)。分别对两类化合物进行TLC和HPLC分析,以95%乙腈水溶液(V∶V)为TLC的展开剂,比移值Rf分别为0.31 min与0.60 min,放化纯度大于99%;HPLC进样质控,紫外检测器和放射性检测器的出峰时间均在2.3~2.4 min之间,化学纯度和放化纯度大于99%。11C-乙酸盐和18F-乙酸盐的合成均由CFN-MPS200多功能合成模块自动合成,过程简单,合成产率稳定,放化纯度和化学纯度高,可以满足临床使用。  相似文献   

8.
11C-CH3I合成条件的优化   总被引:1,自引:0,他引:1  
碳-11 碘代甲烷(11C-CH3I)是正电子药物甲基化不可缺少的重要标记试剂,它广泛用于合成11C-蛋氨酸、11C-胆碱、11C-Raclopride等碳标记正电子药物.我们利用11C-CH3I自动化合成模块对合成条件进行了优化,提高了合成设备产率和合成的稳定性.经过30批次的条件优化实验,获得了较高而且稳定的产率.产物总合成时间11min,放化产率(90.2±2.5)%,放化纯度>98%,合成成功率100%.  相似文献   

9.
11C标记(-)间羟基麻黄素(11C-(-)HED,11C-HED)是一种交感神经系统显像剂,可用于心肌和肾上腺肿瘤的显像。碘代甲烷与(-)间羟胺直接甲基化反应,生成11C-HED,经HPLC梯度淋洗纯化;通过动物实验研究在11C-HED中添加前体后对心肌摄取的影响。结果表明,用碘代甲烷作甲基化试剂可减少副反应,分别用含3%乙醇和10%乙醇的0.24 mol/L磷酸二氢钠溶液梯度淋洗,能有效去除前体间羟胺,同时放化纯度从93.2%提高到98%。11C-HED在动物体内的生物分布表明,注射含2 mg/kg前体间羟胺的11C-HED后,30 min时心肌摄取明显降低,而肾上腺摄取增高。Micro PET显像证实,注射11C-HED后正常心肌显像,但加入前体后心肌摄取降低,清除加快。以上结果提示,分别用含3%和10%乙醇的0.24 mol/L磷酸二氢钠溶液梯度淋洗可提高产品化学纯度和放化纯度;在11C-HED中加入前体间羟胺后对心肌摄取明显降低,而肾上腺摄取增高。  相似文献   

10.
Gefinitib是小分子EGFR(epidemal growth factor receptor)抑制剂,用于非小细胞肺癌治疗。本研究以11C-CH3-Triflate为甲基化试剂,全自动合成了11C-Gefinitib,并用荷A549肿瘤为模型评价了肿瘤特异性摄取。在国产PET自动化11C多功能合成模块上,用11C-CH3-Triflate与7-去甲基Gefinitib在碱性条件下反应,经HPLC纯化和固相萃取得11C-Gefinitib,采用MicroPET/CT显像评价肿瘤特异性摄取。结果表明,自动化合成11C-Gefinitib占时28 min,合成效率为30%–35%(校正效率,n>5),产品放化纯度大于99%,比活度为55.5GBq/μmol。Micro PET/CT显像表明,荷A549肿瘤明显摄取放射性,并被50 mg/kg冷Gefinitib所阻断。结果表明,11C-Gefinitib有望用于临床Gefinitib治疗非小细胞肺癌疗效评价。  相似文献   

11.
采用还原碘化法合成11 CH3I,固相法合成11 C-MET,HPLC分析产品放化纯度,并合成11 CH3OH和11CH3I,利用HPLC分析验证11 C-MET中杂质的成分,探讨溶解前体的NaOH浓度和有机溶剂用量对11 C-MET质量的影响。结果表明,先用0.1mL 2mol/L NaOH溶解前体,再与0.1mL无水乙醇混匀后装入C18柱,可以提高11 C-MET的产率及放化纯度。  相似文献   

12.
将国产11 C碘代甲烷模块和氟多功能模块联合使用,合成11 C的正电子放射性药物。由11 C碘代甲烷模块合成甲基化试剂11 CH3-Triflate,将11 CH3-Triflate通入到含有前体的氟多功能模块第二反应管中,加热后经半制备HPLC纯化,收集产品后再经固相萃制备可供注射的11 C放射性药物。通过以上结合,经HPLC纯化,可自动化合成11 C-Ralopride(合成效率(38.2±4.5)%,n=10)、11 C-PIB(合成效率(68.4±3.2)%,n=12)、11 C-DASB(合成效率(52.4±5.5)%,n=4)、11 C-PK11195(合成效率(45.6±7.1)%,n=8)。制备药物的放化纯度大于95%。研究表明,将国产11 C碘代甲烷模块和氟多功能模块结合使用,可以合成多种11 C放射性药物以满足临床的需求。  相似文献   

13.
为快速、高效合成中枢神经阿片受体显像剂11C-carfentanil(11C-CFN),对国产商业化11C-胆碱合成模块略做改动,并优化了合成条件。结果表明,采用4-哌啶乙酸钠,4-[(1-丙羰基)苯胺]-1-(2-苯乙基)[钠盐]作前体,DMSO作溶剂,11CH3-triflate作甲基化试剂,在胆碱模块上采用反应瓶法,可自动化合成11C-CFN。合成的11C-CFN活度>14.8 GBq、比活度>1.4×1014Bq/g、放化纯度>99%,校正合成效率>80%(n=55,以11CH3-triflate计算),全部合成时间为18 min。经Micro PET/CT证实,11C-CFN可用于μ阿片受体的PET显像研究。  相似文献   

14.
孙传金  朱虹  方可元 《同位素》2012,25(3):155-159
采用国产氟多功能模块,以3-甲氧基甲基-16,17-O-磺酰基-表雌三醇-O-环状砜(3-O-(Methoxymethyl) -16,17-O-sulfuryl-16-epiestriol,MMSE)为前体,在国产氟多功能合成模块的密封体系下,经18F标记合成雌激素受体显像剂16α-[18F]氟-17β-雌二醇(18F-FES)。结果显示:合成的18F-FES,不校正合成效率为8.2%,校正合成效率为12.8%;合成时间约为70 min,标记物18F-FES放化纯度大于98%,体外稳定性良好。以上结果表明,国产氟多功能模块可制备18F-FES溶液,制备的18F-FES溶液符合放射性药物的质量要求。  相似文献   

15.
11C-PIB是诊断阿尔茨海默病(AD)的特征靶Aβ斑块的正电子放射性药物,本工作系统研究了以11CH3-Triflate为甲基化试剂合成11C-PIB合成的影响因素。在国产碳多功能合成仪上, 研究前体量、溶剂、反应温度及体系的pH等对11C-PIB效率的影响,并对合成条件进行优化。结果显示:前体量、溶剂、反应温度及体系的pH均明显影响合成效率。优化后的合成条件为:丙酮为溶剂,前体浓度为5 g/L,反应温度为常温,pH为中性。在此条件下,11C-PIB的合成效率为65.2%±4.7%(n=8,校正效率),产品的放化纯度大于99%,比活度为70.6 GBq/g(18.0 TBq/mmoL)。从11CO211C-PIB的合成时间为30 min, 单次合成的产量为3.7 GBq。以上结果表明,通过优化合成条件,可以稳定、高质量地合成11C-PIB,以满足临床需要。  相似文献   

16.
肿瘤显像剂18F-氟代乙酸盐的自动化合成   总被引:13,自引:0,他引:13  
为研究肿瘤显像剂18F-氟代乙酸盐(18F-FAC)的自动化合成工艺,采用"一锅法"和TRACERlab FXF-N自动化合成装置,以溴代乙酸苄酯为前体,在同一反应瓶中经亲核氟化、NaOH水解两步反应及HPLC系统分离纯化制备18F-FAC注射液.总合成时间约50 min,未校正放化产率和放化纯度分别大于45%和99%.采用"一锅法"自动化合成18F-FAC,操作简便,能满足科研和临床正电子发射断层显像的需要.  相似文献   

17.
采用Iodogen氧化法对胃癌单克隆抗体3 H11进行了123I标记,用PD-10层析柱分离纯化标记物,纸层析法测定标记物的标记率和放化纯度,评价标记物的体外稳定性,并观察了标记物在正常小鼠体内的生物分布。标记结果显示,123I-3 H11的优化标记条件为:Iodogen 10μg、3 H11 30μg、Na123I溶液20μL(13.3 MBq)、磷酸盐缓冲溶液100μL(pH7.4、0.2 mol/L)、常温下反应8 min,123I-3 H11标记率70%~80%;稳定性结果显示,标记物在4℃人血清中的体外稳定性较好,放置48 h后放化纯度92%;正常昆明鼠体内生物学分布显示,全抗3 H11血液半清除时间为12.25±0.25 h,胃组织有明显摄取。以上结果提示,123I-3 H11是一种很有前景的肿瘤放射免疫显像剂。  相似文献   

18.
The optimization for high synthesis yield was designed with 11C-Triflate-CH3I as methylation agent for dopamine transporter imaging agent of11C-β-CFT. The influence factors of the synthesis process were discussed, and the optimum synthetic conditions were established. In the paper, the study showed that the amount of precursor, the irradiation time, eluated condition, the reaction solvent etc could effect the synthetic efficiency.11C-β-CFT was automatic synthesized on PET-CM-3H-IT-Ⅰ with the optimum process conditions as the irradiation time 10-24 minutes, 0.5-1.0 g/L of precursor in 0.2 mL acetone: acetonitrile(1∶1, V∶V) and room temperature. We obtained a radiochemical yield of (76.93±6.49)% (n=76,11C-Triflate-CH3 EOB). The radiochemical purity of final products were over 97%. The specific activities of final products were over (56.26±1.55) TBq/g. It took 16 minutes from11C-CO2 to11C-β-CFT and the radio activity of11C-β-CFT were (8.07±1.94) GBq (n=76). By optimization of the technological conditions, the target product was suitable for clinical, the synthetic process was reliable and full automated, the product yield was improved and the residual problem of Sep-Pak C18 was resloved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号