首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 578 毫秒
1.
循环流化床燃烧在高过剩空气下的NO_x排放   总被引:1,自引:1,他引:0  
提出了借助循环流化床在高过剩空气系数下燃烧的技术提供高温空气的新构思。搭建了循环流化床燃烧热态试验台,完成了循环流化床燃烧在高过剩空气系数下的NOx排放特性试验,结果表明:循环流化床在高过剩空气系数下燃烧温度分布均匀,燃烧稳定性好;过剩空气系数增大,氮氧化物排放增加;提升管二次风高度的增加和还原区系数的减小有利于控制氮氧化物的排放水平和减少煤中的N向NOx的转化比。在过剩空气系数为1.6、还原区系数为0.72和二次风高度为1 500 mm时,循环流化床NOx排放为339 mg/m3,煤中的N向NOx转化比为21%。循环流化床高温空气NOx的浓度对燃料高温燃烧NOx排放的影响需要进一步研究。  相似文献   

2.
朱葛  赵长遂  陈晓平  林良生  周骛 《化工学报》2008,59(10):2627-2633
在一座热态循环流化床燃烧试验装置上对石化污泥与煤进行混烧试验,通过对焚烧过程中烟气成分进行分析,着重考察了质量掺混比、二次风率、过剩空气系数和床温对SO2、NOx和多环芳烃排放浓度的影响。试验结果表明,随着质量掺混比的增大,SO2和NOx的排放浓度下降,而多环芳烃排放浓度呈上升趋势。随着二次风率的增加,SO2的排放浓度上升,而NOx的排放浓度呈下降趋势。随着过剩空气系数的增加,SO2的排放浓度下降,NOx的排放浓度呈上升态势。随着床温或者过剩空气系数的增加,烟气中多环芳烃排放浓度均呈先下降后上升趋势。综合考虑稳定燃烧和降低污染物排放等因素,得出一系列最佳燃烧参数。燃烧温度应该控制在850~860℃,过剩空气系数应该控制在1.35左右,二次风率应该控制在40%左右,质量掺混比应该控制在30%左右。在本次试验范围内,各工况SO2、NOx和多环芳烃的排放浓度均满足国家排放标准。  相似文献   

3.
杨石 《洁净煤技术》2020,26(2):102-108
随着我国对大气污染物排放监管力度的日益严格,NOx控制技术已广泛应用于工业生产的各个领域。作为一种直接、简便的NOx排放控制技术,富氧空气燃烧技术已经出现在燃气锅炉和内燃发动机等行业,然而在燃煤锅炉行业中却鲜有应用。为了验证富氧空气燃烧技术在煤粉工业锅炉中的NOx减排效果,笔者以神府烟煤作为燃料,利用两段式滴管炉试验系统模拟煤粉在锅炉内燃烧的实际情况,采用热态试验方法,研究了烟煤富氧空气分级燃烧的NOx排放特性,并与单级供风、空气分级燃烧2种燃烧方式下的NOx排放情况进行对比。考察了主燃区温度、二次风配比(以主燃区过量氧气系数表示)、二次风氧浓度等关键因素对NOx排放的影响。结果表明:富氧空气分级燃烧的NOx排放显著低于单级供风燃烧,同时也低于空气分级燃烧的NOx排放。主燃区温度为1 300~1 500℃时,富氧空气分级燃烧的NOx排放减少比例比分级配风燃烧提高了6~12个百分点;富氧空气分级燃烧条件下,随主燃区温度升高,煤粉燃烧更加充分,燃料中N元素分解成NHi、HCN等大量中间产物,使主燃区气氛的还原性增强,被还原的NOx比例增加。因此,NOx排放降低且NOx排放减少比例呈现上升趋势;富氧空气分级燃烧的二次风配比对NOx排放具有显著影响,随着主燃区过量氧气系数的升高,NOx排放均呈现先降低后升高的趋势。因此存在最佳二次风配比,使NOx排放浓度最低。主燃区温度为1 300℃时,最佳主燃区过量氧气系数约为0.58;主燃区温度为1 500℃时,最佳主燃区过量氧气系数约为0.55;在主燃区过量空气系数给定的条件下,提高二次风氧浓度可以延长煤粉颗粒在主燃区的停留时间,并在煤粉颗粒表面形成局部富氧环境,促进煤粉充分燃烧,从而增强主燃区气氛的还原性,降低NOx的生成。因此,当二次风氧浓度为21%~31%时,NOx排放随二次风氧含量的升高而降低。随着二次风氧浓度的逐渐升高,NOx排放的降低趋势逐渐放缓。  相似文献   

4.
李慧  杨石  周建明 《洁净煤技术》2020,26(2):109-114
半焦是低阶煤经低温热解后的产物,其中半焦粉与煤粉工业锅炉常用煤种烟煤相比价格低廉。若能将半焦粉用作煤粉工业锅炉的燃料,既可拓宽煤粉工业锅炉的适用燃料范围,又可增强煤粉工业锅炉的市场竞争力。由于半焦挥发分低、固定碳高,实现其着火和稳定燃烧需要更高的温度,同时,降低NOx初始排放也是一个技术难题。为了实现半焦在煤粉工业锅炉中的稳定燃烧及NOx排放的降低,采用两段式滴管炉开展半焦空气分级燃烧NOx排放规律研究。笔者对半焦空气不分级燃烧NOx排放规律进行了研究,主要探究了主燃区温度(1 000~1 400℃)及过量空气系数的影响,为后续空气分级燃烧降低NOx的效果提供对比依据。半焦空气分级燃烧试验主要研究了主燃区温度(1 000~1 400℃)及二次风比例(0.4~0.8)的影响,并从燃尽率、NOx减少比例、灰样微观孔隙和形貌等方面进行论证,试验结果表明,在空气不分级燃烧条件下,即燃尽风配风比例为0时,随着主燃区温度升高,NOx排放浓度随之迅速升高;随着过量空气系数增加,NOx浓度先迅速增加,过量空气系数大于1.15时,NOx浓度增速变缓;在空气分级燃烧中,相同主燃区温度条件下,二次风比例由高到低变化时,NOx排放呈先迅速下降后缓慢回升的变化趋势,燃尽率先快速升高而后趋于平缓。二次风比例为0.56时(即燃尽风率为0.39),燃尽率达90%,NOx排放浓度降至最低,为120 mg/m^3以下,此时是试验条件下的最佳二次风比例。  相似文献   

5.
在一座0.5MWt循环流化床热态试验台上进行了石油焦与煤混合燃烧试验,研究了烟气中NO的排放特性,对于石油焦与煤不同燃料配比,不同锅炉运行参数,如一次风率、过量空气系数、床温和Ca/S比等对烟气中NO排放浓度的影响规律进行了研究。试验表明对纯焦而言,其NO排放浓度较其他混合燃料要高得多,当燃料中焦煤比增大时,NO的排放浓度降低,对不同焦煤比的燃料,随一次风率增大,NO的排放量增加;随过量空气系数的增大,NO的排放浓度增大;随着运行床温的提高,NO排放浓度升高。  相似文献   

6.
采用流化床反应器,研究了高含水抗生素菌渣直接燃烧的NO_x、SO_2排放特性。结果表明,增加过量空气系数,NO_x排放浓度升高,SO_2排放浓度降低;升高燃烧温度,NO_x及SO_2排放浓度均升高;随着燃料含水率的增加,NO_x及SO_2排放浓度均呈现先降低后升高的趋势。空气分级燃烧能有效降低NO_x排放,二次风率增加,NO_x排放浓度显著降低;当二次风率为3/7时,NO_x排放浓度较传统燃烧降低50%。添加CaCO_3进行炉内脱硫,实验结果显示:随钙硫摩尔比(Ca/S)增加,SO_2排放浓度下降,当Ca/S=3时,SO_2排放浓度降低到25 mg·m~(-3)以下,脱硫效率超过99%。  相似文献   

7.
采用流化床反应器,研究了高含水抗生素菌渣直接燃烧的NOx、SO2排放特性。结果表明,增加过量空气系数,NOx排放浓度升高,SO2排放浓度降低;升高燃烧温度,NOx及SO2排放浓度均升高;随着燃料含水率的增加,NOx及SO2排放浓度均呈现先降低后升高的趋势。空气分级燃烧能有效降低NOx排放,二次风率增加,NOx排放浓度显著降低;当二次风率为3/7时,NOx排放浓度较传统燃烧降低50%。添加CaCO3进行炉内脱硫,实验结果显示:随钙硫摩尔比(Ca/S)增加,SO2排放浓度下降,当Ca/S 3时,SO2排放浓度降低到25 mg·m-3以下,脱硫效率超过99%。  相似文献   

8.
煤泥灰含量大、颗粒细、热值低,煤泥的高效清洁燃烧是固废资源化利用的重要方式之一。采用煤粉流态化预热耦合循环流化床燃烧技术,在30 kW预热燃烧综合评价试验台上,控制煤泥掺混比、给料量、还原区当量比、二/三次风比例及过剩空气系数等参数不变,并借助煤气分析仪和烟气分析仪等测量仪器,开展了循环流化床烟煤掺混煤泥的预热燃烧试验。结果表明,循环流化床预热燃烧系统运行稳定可靠,预热温度800℃以上,预热燃料可持续稳定输送到循环流化床中;烟煤掺混高灰分的煤泥,循环灰量增加,循环流化床燃烧室温差小,温度均匀;预热空气当量比由0.36增至0.51时,预热器内温度增加,预热煤气中CO2、HCN体积分数增加,CO、H2、CH4及NH3体积分数降低,煤气热值由2.02 MJ/m3降至1.49 MJ/m3;且随着预热空气当量比的增加,循环流化床燃烧室沿程NO体积分数增加,CO体积分数底部高、上部低,NOx排放量由172 mg/m3增至24...  相似文献   

9.
在中试规模的循环流化床试验装置上进行了甘蔗叶的燃烧试验,试验系统研究了炉子运行参数(床温、过量空气系数和二次风比)对CO、NO、N2O排放的影响规律。结果表明:提高床层温度能有效降低N2O的排放,但同时会导致NO排放的升高。随着空气过量系数的增加,CO能很快降低到较低值,但NO排放却几乎成线性增加,因此,在保证燃料充分燃烧的情况下,应尽量降低过量空气过量系数以减少NO排放。二次风的加入显著降低了NO的排放,但随着空气过量系数的加大,其影响逐渐减弱。  相似文献   

10.
循环床锅炉燃烧份额分布的实验研究和理论分析   总被引:18,自引:0,他引:18  
在循环流化床锅炉小型实验台上,研究了床温、过量空气系数、一二次风比例和煤种等因素对燃烧份额分布的影响,证实了循环流化床锅炉密相区处于欠氧燃烧状态,并且密相区产生的一氧化碳和部分挥发分被带到了稀相区进行燃烧。从流动和燃烧角度对实验结果进行了分析,并从密相区气固两相流行为出发,解释了循环流化床锅炉不同于鼓泡床的一些技术特点。  相似文献   

11.
An incineration test of a toxic chemical organic waste liquid was conducted on a circulating fluidized bed (CFB) incinerator. The flue gas was measured online with the advanced SAE-19 flue gas analyzer. The effects of several factors, in terms of flow rate of waste liquid, ratio of waste liquid injected into dense bed of the CFB, excess air coefficient, the secondary air fraction and bed temperature on NO x emissions, were verified. The experimental results show that NO emissions in flue gas increase with increase in the flow rate of the waste liquid injected into the bed or the excess air coefficient or the bed temperature and those decrease with increase in the ratio of waste liquid injected into the dense bed of the CFB or the secondary air fraction. During the test runs, NO x concentration in flue gas met the national regulation on NO x emissions due to suppressive effect of low temperature and staged combustion in CFB on NO x formation. This paper was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   

12.
在6kWth鼓泡流化床实验台上进行了城市污泥的燃烧实验,研究了烟气再循环气氛和空气气氛下燃烧温度、过量氧气系数、二次风比率对气态污染物排放特性的影响。研究结果表明:燃烧温度升高,NO排放浓度明显升高,SO2排放浓度亦呈上升趋势;过量氧气系数提高,NO排放浓度呈显著上升趋势,SO2排放浓度则呈下降趋势;增大二次风比率,NO排放浓度呈现先降低后升高的趋势,但总体减排效果并不明显,SO2排放浓度出现少量增长;烟气再循环工况下,NO排放浓度随燃烧温度和过量氧气系数变化的趋势与空气气氛燃烧时一致;烟气再循环率从0增加至1,NO排放浓度明显下降;烟气再循环率达到较高值后,NO排放浓度随之提高而降低的趋势减弱;烟气再循环率逐渐升高过程的前期,烟气中CO浓度出现显著升高;再循环率超过0.3后,CO浓度在一定范围内波动,不再升高。  相似文献   

13.
Fossil fuel combustion is one of the major means to meet the mounting global energy demand. However, the increasing NO_x and N_2 O emissions arising from fossil fuel combustion process have hazardous effects. Thus, mitigating these gases is vital to attain a sustainable environment. Interestingly, oxy-fuel combustion in fluidized bed for carbon capture and minimized NO_x emissions is strongly sustainable compare to the other approaches. It was assessed that NO_x formation and fuel-N conversion have significant limitation under oxy-fluidized bed compared to air mode and the mechanism of NO_x formation is still deficient and requires further development. In addition, this review paper discussed the potential of primary measure as low emission process with others supplementary techniques for feasible NO_x reduction. The influences of combustion mode, operating parameters, and reduction techniques such as flue gas recirculation, oxygen staging, biomass co-firing, catalyst, influence of fluidized bed design and structure, decoupling combustion and their merges are respectively evaluated. Findings show that significant minimization of NO_x emission can be achieved through combination of primary and secondary reduction techniques.  相似文献   

14.
Oxy-fuel Circulating Fluidized Bed (CFB) combustion technology, a very promising technology for CO2 capture, combines many advantages of oxy-fuel and CFB technologies. Experiments were carried out in a 50 kWth CFB facility to investigate how operation parameters influence the NO emission in O2/CO2 atmospheres. The simulated O2/CO2 atmospheres were used without recycling the flue gas. Results show that NO emission in 21% O2/79% CO2 atmosphere is lower than that in air atmosphere because of lower temperature and higher char and CO concentrations in the dense bed. Elevating O2 concentration from 21% to 40% in O2/CO2 atmosphere enhances fuel-N conversion to NO. Increasing bed temperature or oxygen/fuel stoichiometric ratio brings higher NO emission in O2/CO2 atmosphere, which is consistent with the results in air-fired CFB combustion. As primary stream fraction increases, NO emission increases more rapidly in O2/CO2 atmosphere than that in air atmosphere. Stream staging is more efficient for controlling NO emission in oxy-CFB combustion than that in air combustion. Oxygen staging provides an efficient way to reduce NO emission in oxy-CFB combustion without influencing the hydrodynamic characteristic in the riser.  相似文献   

15.
以煤焦混合物为燃料的循环流化床锅炉SO2排放特性   总被引:1,自引:1,他引:0       下载免费PDF全文
在工业运行的410 t·h-1循环流化床锅炉上进行烟煤、70%烟煤+30%石油焦和50%无烟煤+50%石油焦的燃烧试验,研究了运行参数对SO2排放特性的影响。结果表明,3种燃料均能达到良好的燃烧效果,炉内温度场分布均匀。在相同燃烧条件下,不同燃料SO2排放量与其中的含硫量呈正相关关系。SO2排放量随温度的升高先减小后增大,存在最佳脱硫温度;随钙硫比的增大而减小;随过量空气系数的增大而减小;随飞灰再循环量的增大而减小。对于不同种类的石灰石,大比表面积和高比孔容积的石灰石对SO2有较好的脱除效果。考察了燃用不同燃料的最佳温度、钙硫比和过量空气系数,阐述了飞灰再循环和石灰石微观结构在循环流化床锅炉脱硫中的机理和作用,以期对循环流化床的设计和运行工作提供指导。  相似文献   

16.
为了消纳新能源上网,循环流化床(CFB)锅炉机组利用自有调峰能力强特点,参与深度调峰灵活性运行。但超低负荷运行时,受密相区流化安全约束,一次风总量无法持续下降,从而破坏了固有的一、二次风分级还原特性,导致更多的NOx生成。同时,炉膛出口温度远低于选择性非催化还原(SNCR)温度窗口,导致设置在分离器内的脱硝系统效率下降。烟气再循环技术是一种适合CFB锅炉低负荷运行的NOx控制技术,介绍了330 MW亚临界CFB锅炉机组烟气再循环改造前后的运行性能对比,结果表明,在超低负荷条件下,采用烟气再循环技术能在维持密相区流化安全的同时,显著降低一次风量,强化密相区还原氛围,同时降低密相区温度,延迟炉膛内燃烧,显著提高炉膛出口烟温,有效避免了分离器内SNCR脱硝效率的降低。并针对烟气再循环系统内的腐蚀提出了合理的运行控制策略。  相似文献   

17.
A well-designed CFBC can burn coal with high efficiency and within acceptable levels of gaseous emissions. In this theoretical study effects of operational parameters on combustion efficiency and the pollutants emitted have been estimated using a developed dynamic 2D (two-dimensional) model for CFBCs. Model simulations have been carried out to examine the effect of different operational parameters such as excess air and gas inlet pressure and coal particle size on bed temperature, the overall CO, NOx and SO2 emissions and combustion efficiency from a small-scale CFBC. It has been observed that increasing excess air ratio causes fluidized bed temperature decrease and CO emission increase. Coal particle size has more significant effect on CO emissions than the gas inlet pressure at the entrance to fluidized bed. Increasing excess air ratio leads to decreasing SO2 and NOx emissions. The gas inlet pressure at the entrance to fluidized bed has a more significant effect on NOx emission than the coal particle size. Increasing excess air causes decreasing combustion efficiency. The gas inlet pressure has more pronounced effect on combustion efficiency than the coal particle size, particularly at higher excess air ratios. The developed model is also validated in terms of combustion efficiency with experimental literature data obtained from 300 kW laboratory scale test unit. The present theoretical study also confirms that CFB combustion allows clean and efficient combustion of coal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号