首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The removal of As(V), one of the most poisonous groundwater pollutants, by synthetic nanoscale zero-valent iron (NZVI) was studied. Batch experiments were performed to investigate the influence of pH, adsorption kinetics, sorption mechanism, and anionic effects. Field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mossbauer spectroscopy were used to characterize the particle size, surface morphology, and corrosion layer formation on pristine NZVI and As(V)-treated NZVI. The HR-TEM study of pristine NZVI showed a core-shell-like structure, where more than 90% of the nanoparticles were under 30 nm in diameter. M?ssbauer spectroscopy further confirmed its structure in which 19% were in zero-valent state with a coat of 81% iron oxides. The XRD results showed that As(V)-treated NZVI was gradually converted into magnetite/maghemite corrosion products over 90 days. The XPS study confirmed that 25% As(V) was reduced to As(III) by NZVI after 90 days. As(V) adsorption kinetics were rapid and occurred within minutes following a pseudo-first-order rate expression with observed reaction rate constants (Kobs) of 0.02-0.71 min(-1) at various NZVI concentrations. Laser light scattering analysis confirmed that NZVI-As(V) forms an inner-sphere surface complexation. The effects of competing anions revealed that HCO3-, H4SiO4(0), and H2PO4(2-) are potential interfering agents in the As(V) adsorption reaction. Our results suggest that NZVI is a suitable candidate for As(V) remediation.  相似文献   

2.
Removal of arsenic(III) from groundwater by nanoscale zero-valent iron   总被引:3,自引:0,他引:3  
Nanoscale zero-valent iron (NZVI) was synthesized and tested for the removal of As(III), which is a highly toxic, mobile, and predominant arsenic species in anoxic groundwater. We used SEM-EDX, AFM, and XRD to characterize particle size, surface morphology, and corrosion layers formed on pristine NZVI and As(III)-treated NZVI. AFM results showed that particle size ranged from 1 to 120 nm. XRD and SEM results revealed that NZVI gradually converted to magnetite/maghemite corrosion products mixed with lepidocrocite over 60 d. Arsenic(III) adsorption kinetics were rapid and occurred on a scale of minutes following a pseudo-first-order rate expression with observed reaction rate constants (K(obs)) of 0.07-1.3 min(-1) (at varied NZVI concentration). These values are about 1000x higher than K(obs) literature values for As(III) adsorption on micron size ZVI. Batch experiments were performed to determine the feasibility of NZVI as an adsorbent for As(III) treatment in groundwater as affected by initial As(III) concentration and pH (pH 3-12). The maximum As(III) adsorption capacity in batch experiments calculated by Freundlich adsorption isotherm was 3.5 mg of As(III)/g of NZVI. Laser light scattering (electrophoretic mobility measurement) confirmed NZVI-As(III) inner-sphere surface complexation. The effects of competing anions showed HCO3-, H4SiO4(0), and H2P04(2-) are potential interferences in the As(III) adsorption reaction. Our results suggest that NZVI is a suitable candidate for both in-situ and ex-situ groundwater treatment due to its high reactivity.  相似文献   

3.
Nanoscale zero-valent iron (NZVI) is used to remediate contaminated groundwater plumes and contaminant source zones. The target contaminant concentration and groundwater solutes (NO3-, Cl-, HCO3-, SO4(2-), and HPO4(2-)) should affect the NZVI longevity and reactivity with target contaminants, but these effects are not well understood. This study evaluates the effect of trichloroethylene (TCE) concentration and common dissolved groundwater solutes on the rates of NZVI-promoted TCE dechlorination and H2 evolution in batch reactors. Both model systems and real groundwater are evaluated. The TCE reaction rate constant was unaffected by TCE concentration for [TCE] < or = 0.46 mM and decreased by less than a factor of 2 for further increases in TCE concentration up to water saturation (8.4 mM). For [TCE] > or = 0.46 mM, acetylene formation increased, and the total amount of H2 evolved at the end of the particle reactive lifetime decreased with increasing [TCE], indicating a higher Fe0 utilization efficiency for TCE dechlorination. Common groundwater anions (5mN) had a minor effect on H2 evolution but inhibited TCE reduction up to 7-fold in increasing order of Cl- < SO4(2-) < HCO3- < HPO4(2). This order is consistent with their affinity to form complexes with iron oxide. Nitrate, a NZVI-reducible groundwater solute, present at 0.2 and 1 mN did not affect the rate of TCE reduction but increased acetylene production and decreased H2 evolution. NO3- present at > 3 mM slowed TCE dechlorination due to surface passivation. NO3- present at 5 mM stopped TCE dechlorination and H2 evolution after 3 days. Dissolved solutes accounted for the observed decrease of NZVI reactivity for TCE dechlorination in natural groundwater when the total organic content was small (< 1 mg/L).  相似文献   

4.
Nanoscale zerovalent iron (NZVI) was aged over 30 days in suspension (2 g/L) with different anions (chloride, perchlorate, sulfate, carbonate, nitrate), anion concentrations (5, 25, 100 mN), and pH (7, 8). During aging, suspension samples were reacted periodically with 1,1,1,2-tetrachloroethane (1,1,1,2-TeCA) and Cr(VI) to determine the time scales and primary mode of NZVI reactivity loss. Rate constants for 1,1,1,2-TeCA reduction in Cl(-), SO(4)(2-), and ClO(4)(-) suspensions decreased by 95% over 1 month but were generally equivalent to one another, invariant of concentration and independent of pH. In contrast, longevity toward 1,1,1,2-TeCA depended upon NO(3)(-) and HCO(3)(-) concentration, with complete reactivity loss over 1 and 14 days, respectively, in 25 mN suspensions. X-ray diffraction suggests that reactivity loss toward 1,1,1,2-TeCA in most systems results from Fe(0) conversion into magnetite, whereas iron carbonate hydroxide formation limits reactivity in HCO(3)(-) suspensions. Markedly different trends in Cr(VI) removal capacity (mg Cr/g NZVI) were observed during aging, typically exhibiting greater longevity and a pronounced pH-dependence. Notably, a strong linear correlation exists between Cr(VI) removal capacities and rates of Fe(II) production measured in the absence of Cr(VI). While Fe(0) availability dictates longevity toward 1,1,1,2-TeCA, this correlation suggests surface-associated Fe(II) species are primarily responsible for Cr(VI) reduction.  相似文献   

5.
The surfaces of nanoscale zerovalent iron (NZVI) used for groundwater remediation must be modified to be mobile in the subsurface for emplacement. Adsorbed polymers and surfactants can electrostatically, sterically, or electrosterically stabilize nanoparticle suspensions in water, but their efficacy will depend on groundwater ionic strength and cation type as well as physical and chemical heterogeneities of the aquifer material. Here, the effect of ionic strength and cation type on the mobility of bare, polymer-, and surfactant-modified NZVI is evaluated in water-saturated sand columns at low particle concentrations where filtration theory is applicable. NZVI surface modifiers include a high molecular weight (MW) (125 kg/mol) poly(methacrylic acid)-b-(methyl methacrylate)-b-(styrene sulfonate) triblock copolymer (PMAA-PMMA-PSS), polyaspartate which is a low MW (2-3 kg/mol) biopolymer, and the surfactant sodium dodecyl benzene sulfonate (SDBS, MW = 348.5 g/mol). Bare NZVI with an apparent zeta-potential of -30 +/- 3 mV was immobile. Polyaspartate-modified nanoiron (MRNIP) with an apparent zeta-potential of -39 +/- 1 mV was mobile at low ionic strengths (< 40 mM for Na+ and < 0.5 mM for Ca2+), and had a critical deposition concentration (CDC) of approximately 770 mM Na+ and approximately 4 mM for Ca2+. SDBS-modified NZVI with a similar apparent zeta-potential (-38.3 +/- 0.9 mV) showed similar behavior (CDC approximately 350 mM for Na+ and approximately 3.5 mM for Ca2+). Triblock copolymer-modified NZVI had the highest apparent zeta-potential (-50 +/- 1.2 mV), the greatest mobility in porous media, and a CDC of approximately 4 M for Na+ and approximately 100s of mM for Ca2+. The high mobility and CDC is attributed to the electrosteric stabilization afforded by the triblock copolymer but not the other modifiers which provide primarily electrostatic stabilization. Thus, electrosteric stabilization provides the best resistance to changing electrolyte conditions likely to be encountered in real groundwater aquifers, and may provide transport distances of 10s to 100s of meters in unconsolidated sandy aquifers at injection velocities used for emplacement.  相似文献   

6.
Arsenic removal by passive treatment, in which naturally present Fe(II) is oxidized by aeration and the forming iron(III) (hydr)oxides precipitate with adsorbed arsenic, is the simplest conceivable water treatment option. However, competing anions and low iron concentrations often require additional iron. Application of Fe(II) instead of the usually applied Fe(III) is shown to be advantageous, as oxidation of Fe(II) by dissolved oxygen causes partial oxidation of As(III) and iron(III) (hydr)oxides formed from Fe(II) have higher sorption capacities. In simulated groundwater (8.2 mM HCO3(-), 2.5 mM Ca2+, 1.6 mM Mg2+, 30 mg/L Si, 3 mg/L P, 500 ppb As(III), or As(V), pH 7.0 +/- 0.1), addition of Fe(II) clearly leads to better As removal than Fe(III). Multiple additions of Fe(II) further improved the removal of As(II). A competitive coprecipitation model that considers As(III) oxidation explains the observed results and allows the estimation of arsenic removal under different conditions. Lowering 500 microg/L As(III) to below 50 microg/L As(tot) in filtered water required > 80 mg/L Fe(III), 50-55 mg/L Fe(II) in one single addition, and 20-25 mg/L in multiple additions. With As(V), 10-12 mg/L Fe(II) and 15-18 mg/L Fe(III) was required. In the absence of Si and P, removal efficiencies for Fe(II) and Fe(III) were similar: 30-40 mg/L was required for As(II), and 2.0-2.5 mg/L was required for As(V). In a field study with 22 tubewells in Bangladesh, passive treatment efficiently removed phosphate, but iron contents were generally too low for efficient arsenic removal.  相似文献   

7.
Nanoscale zero-valent iron (NZVI) represents a promising approach for source zone control, but concerns over its reactive lifetime might limit application. Here, we demonstrate that dithionite (S?O?2?), a reducing agent for in situ redox manipulation, can restore the reducing capacity of passivated NZVI. Slurries of NZVI were aged in the presence (3 days) and absence (60 days) of dissolved oxygen over a range of pH values (6-8). Upon loss of reactivity toward model pollutants{1,1,1,2-tetrachloroethane, hexavalent chromium [Cr(VI)], nitrobenzene}, aged suspensions were reacted with dithionite, and the composition and reactivity of the dithionite-treated materials were determined. NZVI aging products generally depended on pH and the presence of oxygen, whereas the amount of dithionite influenced the nature and reducing capacity of products generated from reaction with aged NZVI suspensions. Notably, air oxidation at pH ≥ 8 quickly exhausted NZVI reactivity despite preservation of significant Fe(0) in the particle core. Under these conditions, formation of a passive surface layer hindered the complete transformation of NZVI particles into iron(III) oxides, which occurred at lower pH. Reduction of this passive layer by low dithionite concentrations( 1 g/g of NZVI) restored suspension reactivity to levels equal to, and occasionally greater than, that of unaged NZVI. Multiple dithionite additions further improved pollutant removal, allowing at least a 15-fold increase in Cr(VI) removal [~300 mg of Cr(VI)/g of NZVI] relative to that of as-received NZVI [~20 mg of Cr(VI)/g of NZVI].  相似文献   

8.
Amphiphilic polysiloxane graft copolymers (APGCs) were used as a delivery vehicle for nanoscale zerovalent iron (NZVI). The APGCs were designed to enable adsorption onto NZVI surfaces via carboxylic acid anchoring groups and polyethylene glycol (PEG) grafts were used to provide dispersibility in water. Degradation studies were conducted with trichloroethylene (TCE) as the model contaminant. TCE degradation rate with APGC-coated NZVI (CNZVI) was determined to be higher as compared to bare NZVI. The surface normalized degradation rate constants, k(SA) (Lm(2-) h(-1)), for TCE removal by CNZVI and bare NZVI ranged from 0.008 to 0.0760 to 007-0.016, respectively. Shelf life studies conducted over 12 months to access colloidal stability and 6 months to access TCE degradation indicated that colloidal stability and chemical reactivity of CNZVI remained more or less unchanged. The sedimentation characteristics of CNZVI under different ionic strength conditions (0-10 mM) did not change significantly. The steric nature of particle stabilization is expected to improve aquifer injection efficiency of the coated NZVI for groundwater remediation.  相似文献   

9.
The combined removal of chlorinated ethenes and heavy metals from a simulated groundwater matrix by zerovalent iron (ZVI) was investigated. In batch, Ni (5-100 mg L(-1)) enhanced trichloroethene (TCE, 10 mg L(-1)) reduction by ZVI (100 g L(-1)) due to catalytic hydrodechlorination by bimetallic Fe0/Ni0. Cr(VI) or Zn (5-100 mg L(-1)) lowered TCE degradation rates by a factor of 2 to 13. Cr(VI) (100 mg L(-1)) in combination with Zn or Ni (50-100 mg L(-1)) inhibited TCE degradation. Addition of 20% H2(g) in the headspace, or of Zn (50-100 mg L(-1)), enhanced TCE removal in the presence of Ni and Cr(VI). Sorption of Zn to ZVI alleviated the Cr(VI) induced inhibition of bimetallic Fe0/Ni0 apparently due to release of protons necessary for TCE hydrodechlorination. In continuous ZVI columns treating tetrachloroethene (PCE, 1-2 mg L(-1)) and TCE (10 mg L(-1)), and a mixture of the metals Cr(VI), Zn(II), and Ni(II) (5 mg (L-1)), the PCE removal efficiency decreased from 100% to 90% in columns operated without heavy metals. The PCE degradation efficiency remained above 99% in columns receiving heavy metals as long as Ni was present. The findings of this study indicate the feasibility and limitations of the combined treatment of mixtures of organic and inorganic pollutants by ZVI.  相似文献   

10.
Dissimilatory metal-reducing bacteria can mobilize As, but few studies have studied such processes in deeper orange-colored Pleistocene sands containing 1-2 mg kg(-1) As that are associated with low-As groundwater in Bangladesh. To address this gap, anaerobic incubations were conducted in replicate over 90 days using natural orange sands initially containing 0.14 mg kg(-1) of 1 M phosphate-extractable As (24 h), >99% as As(V), and 0.8 g kg(-1) of 1.2 M HCl-leachable Fe (1 h at 80 °C), 95% as Fe(III). The sediment was resuspended in artificial groundwater, with or without lactate as a labile carbon source, and inoculated with metal-reducing Shewanella sp. ANA-3. Within 23 days, dissolved As concentrations increased to 17 μg L(-1) with lactate, 97% as As(III), and 2 μg L(-1) without lactate. Phosphate-extractable As concentrations increased 4-fold to 0.6 mg kg(-1) in the same incubations, even without the addition of lactate. Dissolved As levels in controls without Shewanella, both with and without lactate, instead remained <1 μg L(-1). These observations indicate that metal-reducers such as Shewanella can trigger As release to groundwater by converting sedimentary As to a more mobilizable form without the addition of high levels of labile carbon. Such interactions need to be better understood to determine the vulnerability of low-As aquifers from which drinking water is increasingly drawn in Bangladesh.  相似文献   

11.
We examined the corrosion products of zerovalent iron used in three column tests for removing arsenic from water under dynamic flow conditions. Each column test lasted 3-4 months using columns consisting of a 10.3-cm depth of 50:50 (w:w, Peerless iron:sand) in the middle and a 10.3cm depth of a sediment from Elizabeth City, NC, in both upper and lower portions of the 31-cm-long glass column (2.5 cm in diameter). The feeding solutions were 1 mg of As(V) L(-1) + 1 mg of As(III) L(-1) in 7 mM NaCl + 0.86 mM CaSO4 with or without added phosphate (0.5 or 1 mg of P L(-1)) and silicate (10 or 20 mg of Si L(-1)) at pH 6.5. Iron(II,III) hydroxycarbonate green rust (or simply, carbonate green rust) and magnetite were the major iron corrosion products identified with X-ray diffraction for the separated fractions (5 and 1 min sedimentation and residual). The presence of carbonate green rust was confirmed by scanning electron microscopy (hexagonal morphology) and FTIR-photoacoustic spectroscopy (interlayer carbonate stretching mode at 1352-1365 cm(-1)). X-ray photoelectron spectroscopy investigation revealed the presence of predominantly As(V) at the surface of corroded iron particles despite the fact that the feeding solution in contact with Peerless iron contained more As(III) than As(V) as a result of a preferential uptake of As(V) over As(III) by the Elizabeth City sediment. Extraction of separated corrosion products with 1.0 M HCI showed that from 86 to 96% of the total extractable As (6.9-14.6 g kg(-1)) was in the form of As(V) in agreement with the XPS results. Combined microscopic and macroscopic wet chemistry results suggest that sorbed As(III) was partially oxidized by the carbonate green rust at the early stage of iron corrosion. The column experiments suggest that either carbonate green rust is kinetically favored or is thermodynamically more stable than sulfate green rust in the studied Peerless iron corrosion systems.  相似文献   

12.
The use of zerovalent iron micro- and nanoparticles (MZVI and NZVI) for groundwater remediation is hindered by colloidal instability, causing aggregation (for NZVI) and sedimentation (for MZVI) of the particles. Transportability of MZVI and NZVI in porous media was previously shown to be significantly increased if viscous shear-thinning fluids (xanthan gum solutions) are used as carrier fluids. In this work, a novel modeling approach is proposed and applied for the simulation of 1D flow and transport of highly concentrated (20 g/L) non-newtonian suspensions of MZVI and NZVI, amended with xanthan gum (3 g/L). The coupled model is able to simulate the flow of a shear thinning fluid including the variable apparent viscosity arising from changes in xanthan and suspended iron particle concentrations. The transport of iron particles is modeled using a dual-site approach accounting for straining and physicochemical deposition/release phenomena. A general formulation for reversible deposition is herein proposed, that includes all commonly applied dynamics (linear attachment, blocking, ripening). Clogging of the porous medium due to deposition of iron particles is modeled by tying porosity and permeability to deposited iron particles. The numerical model proved to adequately fit the transport tests conducted using both MZVI and NZVI and can develop into a powerful tool for the design and the implementation of full scale zerovalent iron applications.  相似文献   

13.
Blast-furnace sludge is generated during the production of pig iron and is disposed of in the environment in large surface landfills. We investigated blast-furnace sludge samples of an abandoned landfill in order to determine its chemical and mineralogical nature and to evaluate some environmental hazards that may arise from this industrial waste. The mineralogical inventory, which was quantified by Rietveld refinement of XRD analyses using the fundamental-parameter approach, revealed that blast-furnace sludge is dominated by X-ray amorphous substances (with a mean of 590 g kg(-1)) including coke and (hydr)oxides of Fe, Si, Al, Zn, and Pb. Calcite (CaCO3) (136 g kg(-1)), dolomite (Ca,Mg[CO3]2) (14 g kg(-1)), quartz (SiO2) (55 g kg(-1)), kaolinite (Al2[OH]4Si2O5) (40 g kg(-1)), graphite (C) (27 g kg(-1)), and chemically not specified layered double hydroxides (28 g kg(-1)) were identified in almost all samples. Iron is present as magnetite (Fe3O4) (34 g kg(-1)), hematite (Fe2O3) (38 g kg(-1)), wuestite (FeO) (20 g kg(-1)) and alpha-iron (Fe0) (6 g kg(-1)). Chemically, blast-furnace sludge is dominated by C (190 g kg(-1)) and Fe (158 g kg(-1)) reflecting the process of pig-iron production. On the basis of total contents, environmentally problematic metals (including As) are Zn (32.6 g kg(-1)), Pb (10.3 g kg(-1)), Cd (81 mg kg(-1)), and As (129 mg kg(-1)). As the forested landfill is used by residents for leisure activities, the exposure assessment by pathway oral uptake of blast-furnace sludge particles by humans has to be critically evaluated, particularly as significant proportions of metals are acid-soluble. However, under the prevailing slightly alkaline pH values of the sludge (pH 7.6-9.2), the solubility of the metals is very low as indicated by low pore water concentrations. Currently, groundwater monitoring should be focused mainly on F- since the F- concentrations in the pore water of blast-furnace sludge are at high level (2.65-24.1 mg of F- L(-1)).  相似文献   

14.
Thermogravimetric analysis (TGA) combined with X-ray diffraction (XRD) was used to identify mineral phases and determine corrosion rates of granular iron samples from a 2-yr field column study. Similar to other studies, goethite, magnetite, aragonite, and calcite were found to be the major precipitated minerals, with Fe2(OH)2CO3 and green rust as minor phases. Based on TGA-mass spectrometry (MS) analysis, Fe0 corrodes at rates of 0.5-6.1 mmol kg(-1) d(-1) in the high NO3- (up to 13.5 mM) groundwater; this rate is significantly higher than previously reported. Porosity reduction was 40.6%-45.1% for the inlet sand/Fe0 interface and 7.4%-25.6% for effluent samples of two test columns. Normalized for treatment volumes, porosity loss values are consistent with studies that use high levels of SO4(2-) but are higher than those using low levels of corrosive species. Aqueous mass balance calculations yield corrosion rates similar to the TGA-MS method, providing an alternative to coring and mineralogical analysis. A severely corroded iron sample from the column simulating a 17-yr treatment throughput showed >75% porosity loss. Extensive porosity loss due to high levels of corrosive species in groundwater will have significant impact on long-term performance of permeable reactive barriers.  相似文献   

15.
Pyrene removal by polycation-montmorillonite (MMT) composites and granulated activated carbon (GAC) in the presence of humic acid (HA) was examined. Pyrene, HA, and sorbent interactions were characterized by FTIR, fluorescence and zeta measurements, adsorption, and column filtration experiments. Pyrene binding coefficients to the macromolecules were in the order of PVPcoS (poly-4-vinylpiridine-co-styrene) > HA > PDADMAC (poly diallyl-dimethyl-ammonium-chloride), correlating to pyrene-macromolecules compatibility. Electrostatic interactions explained the high adsorption of HA to both composites (~100%), whereas HA adsorption by GAC was low. Pyrene removal by the composites, unlike GAC, was enhanced in the presence of HA; removal by PDADMAC-MMT increased from ~50 (k(d) = 2.2 × 10(3) kg/L) to ~70% (k(d) = 2.4 × 10(3) kg/L) in the presence of HA. This improvement was attributed to the adsorption of pyrene-HA complexes. PVPcoS-MMT was most efficient in removing pyrene (k(d) = 1.1 × 10(4) kg/L, >95% removal) which was explained in terms of specific π donor-π acceptor interactions. Pyrene uptake by column filters of GAC reached ~50% and decreased to ~30% in the presence of HA. Pyrene removal by the PVPcoS-MMT filter was significantly higher (100-85% removal), exhibiting only a small decrease in the presence of HA. The utilization of HA as an enhancing agent in pollutant removal is novel and of major importance in water treatment.  相似文献   

16.
Effects of dissolved carbonate on arsenate [As(V)] reactivity and surface speciation at the hematite-water interface were studied as a function of pH and two different partial pressures of carbon dioxide gas [P(CO2) = 10(-3.5) atm and approximately 0; CO2-free argon (Ar)] using adsorption kinetics, pseudo-equilibrium adsorption/titration experiments, extended X-ray absorption fine structure spectroscopic (EXAFS) analyses, and surface complexation modeling. Different adsorbed carbonate concentrations, due to the two different atmospheric systems, resulted in an enhanced and/or suppressed extent of As(V) adsorption. As(V) adsorption kinetics [4 g L(-1), [As(V)]0 = 1.5 mM and I = 0.01 M NaCl] showed carbonate-enhanced As(V) uptake in the air-equilibrated systems at pH 4 and 6 and at pH 8 after 3 h of reaction. Suppressed As(V) adsorption was observed in the air-equilibrated system in the early stages of the reaction at pH 8. In the pseudo-equilibrium adsorption experiments [1 g L(-1), [As(V)]0 = 0.5 mM and I = 0.01 M NaCI], in which each pH value was held constant by a pH-stat apparatus, effects of dissolved carbonate on As(V) uptake were almost negligible at equilibrium, but titrant (0.1 M HCl) consumption was greater in the air-equilibrated systems (P(CO2) = 10(-3.5) atm) than in the CO2-free argon system at pH 4-7.75. The EXAFS analyses indicated that As(V) tetrahedral molecules were coordinated on iron octahedral via bidentate mononuclear ( 2.8 A) and bidentate binuclear (approximately equal to 3.3 A) bonding at pH 4.5-8 and loading levels of 0.46-3.10 microM m(-2). Using the results of the pseudo-equilibrium adsorption data and the XAS analyses, the pH-dependent As(V) adsorption under the P(CO2) = 10(-3.5) atm and the CO2-free argon system was modeled using surface complexation modeling, and the results are consistent with the formation of nonprotonated bidentate surface species at the hematite surfaces. The results also suggest that the acid titrant consumption was strongly affected by changes to electrical double-layer potentials caused by the adsorption of carbonate in the air-equilibrated system. Overall results suggest that the effects of dissolved carbonate on As(V) adsorption were influenced by the reaction conditions [e.g., available surface sites, initial As(V) concentrations, and reaction times]. Quantifying the effects of adsorbed carbonate may be important in predicting As(V) transport processes in groundwater, where iron oxide-coated aquifer materials are exposed to seasonally fluctuating partial pressures of CO2(g).  相似文献   

17.
The use of hydroxyapatite (HA) to sequester metals at mixed waste sites may reduce metal toxicity and facilitate microbial degradation of cocontaminant organics. The constitutive trichloroethylene (TCE) degrader, Burkholderia vietnamiensis PR1301, grew at 34.1 and 1.7 mM Ni at pH 5 and 7, respectively, with 0.01 g mL(-1) HA compared to 17 and 0.85 mM Ni without HA. PR1 grew at 4.2 mM U at pH 5 and 7 with 0.01 g mL(-1) HA compared to 1.1 mM U without HA. A similar decrease in the toxicity of Ni and U in combination was observed with HA. The ability of PR1 to degrade TCE at 0.85, 1.7, and 3.4 mM Ni and at 0.42 and 1.1 mM U was examined. The presence of TCE resulted in a decreased tolerance of PR1 to Ni and U; however, HA facilitated TCE degradation in the presence of Ni and U, effectively doubling the metal concentrations at which TCE degradation proceeded. These studies suggest that metal sequestration via HA amendments may offer a feasible approach to reducing metal toxicity to microorganisms at mixed waste sites, thereby enhancing the degradation of cocontaminant organics.  相似文献   

18.
Several recent investigations have shown encouraging potential for the removal of arsenic (As) from groundwater by granular zerovalent iron (Fe0). In contrast to previous studies conducted, we have investigated the applicability of this method and the nature of As bonding under conditions with dissolved sulfide. Three column tests were performed over the period of 1 year using solutions with either As(V) or As(II) (2-200 mg/L) in the input solution. Arsenic outflow concentrations decreased from initially 30-100 microg/L to concentrations of below 1 microg/L with time. XANES (X-ray absorptions near edge structure) and EXAFS (expanded X-ray absorption fine structure) spectra indicated that As in the solid phase is not only directly coordinated with oxygen, as is the case in adsorbed or coprecipitated arsenite and arsenate. Samples with high sulfur content showed additional bonding, for which Fourier transformations of EXAFS data exhibited a peak between 2.2 and 2.4 A. This bonding most likely originated from the direct coordination of sulfur or iron with As, which was incorporated in iron sulfides orfrom adsorbed thioarsenites. The formation of this sulfide bonding supports the removal of As by Fe0 because sulfide production by microbial sulfate reduction is ubiquitous in permeable reactive barriers composed of Fe0.  相似文献   

19.
The effects of high aqueous carbonate concentrations on arsenic mobility and transport in the subsurface were studied in synthetic iron oxide-coated sand column experiments. Elevated aqueous carbonate concentrations in groundwater have been studied and linked, by some authors, to increased aqueous As concentrations in natural waters. This study found that increasing carbonate concentrations had relatively little effect on As(V) adsorption to the iron oxide-coated sand surface at pH 7. The adsorption of As(V) decreased marginally when the CO2(g) partial pressure increased from 10(-3.5) to 10(-1.8) atm, despite a 50-fold increase in total dissolved carbonate (0.072 to 3.58 mM). Increasing the CO2(g) partial pressure to 10(-10) atm resulted in only a slight decrease in As(V) adsorption and increase in mobility, despite a >300-fold increase in total dissolved carbonate (to 22.7 mM). When compared to phosphate, a known competitive anion, carbonate mobilized less adsorbed As(V) than was mobilized by phosphate, even when present in much higher concentrations than phosphate. This was also true for an experiment with lower pore water velocity and an experiment where As(II) was introduced instead of As(V). Our experiments conclude that while carbonate anions do compete with As for adsorption to iron oxide-coated sand, the competitive effect is relatively small with regard to the total concentration of adsorbed As and the potential competitive effects of phosphate.  相似文献   

20.
The distinct effects of humic acid (HA, 0-10 mg L(-1)) on the transport of titanium dioxide (rutile) nanoparticles (nTiO(2)) through saturated sand columns were observed under conditions of environmental relevance (ionic strength 3-200 mM NaCl, pH 5.7 and 9.0). Specifically, the transport of nTiO(2) was dramatically enhanced in the presence of HA at pH 5.7, even at a low HA concentration of 1 mg L(-1). The mobility of nTiO(2) was further increased with greater concentrations of HA. In contrast, this enhancement of the nTiO(2) transportability due to the presence of HA was limited at pH 9.0 because of the negligible adsorption of HA onto nTiO(2), regardless of the concentrations of HA examined in this study. The distinct effects can be explained by the adsorption behaviors of HA to nTiO(2) and sand surfaces and the resulting interactions between nTiO(2) and sand surfaces under different conditions, which resulted in a large variation of the nTiO(2) transport and deposition behaviors at various conditions. In addition, theoretical interaction energy calculations and additional elution experiments indicate that the secondary energy minimum played an important role in controlling the nTiO(2) transport and deposition in porous media observed in this study. Moreover, the interaction energy calculations suggest that at pH 5.7, HA affected nTiO(2) transport by increasing the negative surface charge of nTiO(2) at low HA adsorption densities; whereas, combinations of increased electrostatic and steric interactions due to the presence of HA were the main mechanisms of enhanced transportability of nTiO(2) at high HA adsorption densities. Overall, results from this study suggest that natural organic matter and solution pH are likely key factors that govern the stability and mobility of nTiO(2) in the natural aquatic environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号