首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 627 毫秒
1.
By introducing a full‐rate space–time coding (STC) scheme, a synchronous CDMA (code division multiple access) system with full‐rate STC is given, and the corresponding uplink performance is investigated in Rayleigh fading channel with imperfect estimation. Considering that existing STC‐CDMA system has high decoding complexity, low‐complexity multiuser receiver schemes are developed for perfect and imperfect estimations, respectively. The schemes can make full use of the complex orthogonality of STC to reduce the high decoding complexity of the existing scheme, and have linear decoding complexity compared with the existing scheme with exponential decoding complexity. Moreover, the proposed schemes can achieve almost the same performance as the existing scheme. Compared with full‐diversity STC‐CDMA, the given full‐rate STC‐CDMA can achieve full data rate, low complexity, and partial diversity, and form efficient spatial interleaving. Thus, the concatenation of channel coding can effectively compensate for the performance loss due to partial diversity. Simulation results show that the full‐rate STC‐CDMA has lower bit error rate (BER) than full‐diversity STC‐CDMA systems under the same system throughput and concatenation of channel code. Moreover, the system BER with imperfect estimation are worse than that with perfect estimation due to the estimation error, which implies that the developed multiuser receiver schemes are valid and reasonable. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Differential space–time modulation (DSTM) schemes were recently proposed to fully exploit the transmit and receive antenna diversities without the need for channel state information. DSTM is attractive in fast flat fading channels since accurate channel estimation is difficult to achieve. In this paper, we propose a new modulation scheme to improve the performance of DS‐CDMA systems in fast time‐dispersive fading channels. This scheme is referred to as the differential space–time modulation for DS‐CDMA (DST‐CDMA) systems. The new modulation and demodulation schemes are especially studied for the fast fading down‐link transmission in DS‐CDMA systems employing multiple transmit antennas and one receive antenna. We present three demodulation schemes, referred to as the differential space–time Rake (DSTR) receiver, differential space–time deterministic (DSTD) receiver, and differential space–time deterministic de‐prefix (DSTDD) receiver, respectively. The DSTD receiver exploits the known information of the spreading sequences and their delayed paths deterministically besides the Rake‐type combination; consequently, it can outperform the DSTR receiver, which employs the Rake‐type combination only, especially for moderate‐to‐high SNR. The DSTDD receiver avoids the effect of intersymbol interference and hence can offer better performance than the DSTD receiver. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
This paper focuses on noncoherent detection scheme for multiple‐input multiple‐output two‐way relay channel network with two two‐antennas source nodes and one single‐antenna relay node. An orthogonal differential space–time network coding (ODSTNC) scheme based on relay detection and forward protocol is proposed. The proposed scheme combines space–time coding with network coding, and the differential modulation and detection are used in both multiple access stage and broadcast stage. The multiple‐symbol differential detection is employed at the relay. The maximum likelihood decision and its low‐complexity sphere decoding decision are given. The upper and lower bounds on the average symbol error probability for this system under differential binary phase shift keying (DBPSK) are derived, and a diversity order of 2 is confirmed to be achieved. The simulation results show that the ODSTNC scheme has good performance, and it is available for the applications of far distance signal transmission between two terminals where channel state information is unknown. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
This paper investigates blind channel estimation and multiuser detection for quasi‐synchronous multi‐carrier code‐division multiple‐access (MC‐CDMA) multiple‐input multiple‐output (MIMO) systems with quasi‐orthogonal space–time block codes (QO‐STBC). Subspace‐based blind channel estimation is proposed by considering a QO‐STBC scheme that involves four transmit antennas and multiple receive antennas. Based on the first‐order perturbation theory, the mean square error of the channel estimation is derived. With the estimated channel coefficients, we employ minimum output energy and eigenspace receivers for symbol detection. Using the QO‐STBC coding property, the weight analyses are performed to reduce the computational complexity of the system. In addition, the forward–backward averaging technique is presented to enhance the performance of multiuser detection. Numerical simulations are given to demonstrate the superiority of the proposed channel estimation methods and symbol detection techniques. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
A network‐coded cooperative relaying aided free‐space optical (FSO) transmission scheme is designed. The resultant multiple‐source cooperation diversity is exploited by the relay to mitigate the strong turbulence‐induced fading experienced in FSO channels. At the destination, an iterative multiple source detection algorithm is proposed in conjunction with a chip‐level soft network decoding method. Our performance evaluation results using simulation analysis demonstrate that the proposed FSO multiple source detection is capable of approaching the single‐user‐bound for transmission over Gamma–Gamma turbulence channels. Also, the network‐coded cooperative FSO scheme can achieve a significant BER improvement in comparison with conventional noncooperation schemes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Cross‐layer design is a generic designation for a set of efficient adaptive transmission schemes, across multiple layers of the protocol stack, that are aimed at enhancing the spectral efficiency and increasing the transmission reliability of wireless communication systems. In this paper, one such cross‐layer design scheme that combines physical layer adaptive modulation and coding (AMC) with link layer truncated automatic repeat request (T‐ARQ) is proposed for multiple‐input multiple‐output (MIMO) systems employing orthogonal space‐‐time block coding (OSTBC). The performance of the proposed cross‐layer design is evaluated in terms of achievable average spectral efficiency (ASE), average packet loss rate (PLR) and outage probability, for which analytical expressions are derived, considering transmission over two types of MIMO fading channels, namely, spatially correlated Nakagami‐m fading channels and keyhole Nakagami‐m fading channels. Furthermore, the effects of the maximum number of ARQ retransmissions, numbers of transmit and receive antennas, Nakagami fading parameter and spatial correlation parameters, are studied and discussed based on numerical results and comparisons. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we extend the geometrical one‐ring multiple‐input multiple‐output (MIMO) channel model with respect to frequency selectivity. Our approach enables the design of efficient and accurate simulation models for wideband space‐time MIMO channels under isotropic scattering conditions. Two methods will be provided to compute the parameters of the simulation model. Especially, the temporal, frequency and spatial correlation properties of the proposed wideband space‐time MIMO channel simulator are studied analytically. It is shown that any given specified or measured discrete power delay profile (PDP) can be incorporated into the simulation model. The high accuracy of the simulation model is demonstrated by comparing its statistical properties with those of the underlying reference model with specified correlation properties in the time, frequency and spatial domain. As an application example of the new MIMO frequency‐selective fading channel model, we study the influence of various channel model parameters on the system performance of a space‐time coded orthogonal frequency division multiplexing (OFDM) system. For example, we investigate the influence of the antenna element spacings of the base station (BS) antenna as well as the mobile station (MS) antenna. It turns out that an increasing of the antenna element spacing at the BS side results in a higher diversity gain than an increasing of the antenna element spacing at the MS side. Furthermore, the diversity gain brought in by space‐time block coding schemes is investigated by simulation. Our results show that transmitter diversity can significantly reduce the symbol error rate (SER) of multiple antenna systems. Finally, the influence of the Doppler effect and the impact of imperfect channel state information (CSI) on the system performance is also investigated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, a low‐complexity spread spectrum system with M‐ary cyclic‐shift keying (MCSK) symbol spreading is proposed. In addition, by using the minimum‐shift‐keying (MSK) as the chip‐level modulation, we obtain a high‐rate QPSK‐MCSK transceiver scheme which not only provides a constant‐envelop and continuous‐phase transmitted signal, but can also achieve a better performance than the conventional direct sequence spread spectrum (DSSS) system. At the transmitter, the data stream is first mapped into QPSK‐MCSK symbols in terms of orthogonal Gold code sequences, then followed by the cyclic prefix (CP) insertion for combating the interblock interference, and finally applying the MSK scheme to maintain the constant‐envelope property. The receiver first performs MSK demodulation, then CP removal, and finally the channel‐included MCSK despreading and symbol demapping. Furthermore, the single input single output (SISO) QPSK‐MCSK transceiver can be easily extended to the multiple input single output (MISO) case by incorporating the space–time block coding for high‐link quality. Simulation results show that the proposed SISO and MISO QPSK‐MCSK systems significantly outperform the conventional DSSS counterparts under the AWGN channel, and attain a more robust performance under the multipath fading channel. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Practically, the maximum transmission power of transmission systems is limited. This power constraint causes the variable power control derived from no maximum power limitation suffering from performance degradation. In this paper, a constrained variable‐power adaptive M‐ary quadrature amplitude modulation scheme for MIMO systems with space–time coding is developed. Convex optimization is used to derive the switching thresholds of the instantaneous signal‐to‐noise ratio for power control (PC) and adaptive modulation under the constraints of maximum power, average power, and target BER. In the derivation of the relation between modulation and power, the exact BER expression of binary phase shift keying modulation and a tight bound for higher order quadrature amplitude modulation are used to make the PC scheme fulfill the target BER even at low signal‐to‐noise ratio where the previous PC schemes fail to meet the target BER. Numerical results show that the derived control scheme under the power constraints can obtain the spectrum efficiency and BER performance close to the previous control scheme without power limitation. Moreover, it can satisfy the requirements of power limitation and target BER and can effectively avoid the excessive power consumption of previous PC scheme in poor channel condition. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
This paper assumes two users and a two‐way relay network with the combination of 2×2 multi‐input multi‐output (MIMO) and nonorthogonal multiple access (NOMA). To achieve network reliability without sacrificing network throughput, network‐coded MIMO‐NOMA schemes with convolutional, Reed‐Solomon (RS), and turbo codes are applied. Messages from two users at the relay node are network‐coded and combined in NOMA scheme. Interleaved differential encoding with redundancy (R‐RIDE) scheme is proposed together with MIMO‐NOMA system. Quadrature phase‐shift keying (QPSK) modulation technique is used. Bit error rate (BER) versus signal‐to‐noise ratio (SNR) (dB) and average mutual information (AMI) (bps/Hz) versus SNR (dB) in NOMA and MIMO‐NOMA schemes are evaluated and presented. From the simulated results, the combination of MIMO‐NOMA system with the proposed R‐RIDE‐Turbo network‐coded scheme in two‐way relay networks has better BER and higher AMI performance than conventional coded NOMA system. Furthermore, R‐RIDE‐Turbo scheme in MIMO‐NOMA system outperforms the other coded schemes in both MIMO‐NOMA and NOMA systems.  相似文献   

11.
A closed‐loop multiple‐input multiple‐output (MIMO) transceiver combining space–time multilayer precoding and transmit selection is proposed. The transmitter design consists in optimizing the number of space–time transmit layers as well as the partitioning of the transmit antennas into the selected number of space–time layers. We show that this problem can be translated into jointly selecting, from a finite alphabet, two transmit matrices that define, respectively, the multilayer space–time code and the antenna mapping to be used. The parametrization of the proposed design takes into account all possible space–time layering schemes in between spatial multiplexing and transmit diversity for a fixed number of transmit antennas and linear precoder structure. Sufficient conditions for solution existence using a linear space–time zero forcing receiver are discussed. Simulation results compare the proposed transceiver with some MIMO schemes and corroborate the benefits of closed‐loop multilayer selection in terms of capacity and bit error rates. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, we study the performance of multiple‐input multiple‐output cognitive amplify‐and‐forward relay networks using orthogonal space–time block coding over independent Nakagami‐m fading. It is assumed that both the direct transmission and the relaying transmission from the secondary transmitter to the secondary receiver are applicable. In order to process the received signals from these links, selection combining is adopted at the secondary receiver. To evaluate the system performance, an expression for the outage probability valid for an arbitrary number of transceiver antennas is presented. We also derive a tight approximation for the symbol error rate to quantify the error probability. In addition, the asymptotic performance in the high signal‐to‐noise ratio regime is investigated to render insights into the diversity behavior of the considered networks. To reveal the effect of network parameters on the system performance in terms of outage probability and symbol error rate, selected numerical results are presented. In particular, these results show that the performance of the system is enhanced when increasing the number of antennas at the transceivers of the secondary network. However, increasing the number of antennas at the primary receiver leads to a degradation in the secondary system performance. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
For wireless multiple‐input multiple‐output (MIMO) communications systems, both channel estimation error and spatial channel correlation should be considered when designing an effective signal detection system. In this paper, we propose a new soft‐output MMSE based Vertical Bell Laboratories Layered Space‐Time (V‐BLAST) receiver for spatially‐correlated Rician fading MIMO channels. In this novel receiver, not only the channel estimation errors and channel correlation but also the residual interference cancellation errors are taken into consideration in the computation of the MMSE filter and the log‐likelihood ratio (LLR) of each coded bit. More importantly, our proposed receiver generalizes all existing soft‐output MMSE V‐BLAST receivers, in the sense that, previously proposed soft‐output MMSE V‐BLAST receivers can be derived as the reduced forms of our receiver when the above three considered factors are partially or fully simplified. Simulation results show that the proposed soft‐output MMSE V‐BLAST receiver outperforms the existing receivers with a considerable gain in terms of bit‐error‐rate (BER) performance. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we consider progressive image transmission over differentially space‐time coded orthogonal frequency‐division multiplexing (OFDM) systems and treat the problem as one of optimal joint source‐channel coding (JSCC) in the form of unequal error protection (UEP), as necessitated by embedded source coding (e.g., SPIHT and JPEG 2000). We adopt a product channel code structure that is proven to provide powerful error protection and employ low‐complexity decision‐feedback decoding for differentially space‐time coded OFDM without assuming channel state information. For a given SNR, the BER performance of the differentially space‐time coded OFDM system is treated as the channel condition in the JSCC/UEP design via a fast product code optimization algorithm so that the end‐to‐end quality of reconstructed images is optimized in the average minimum MSE sense. Extensive image transmission experiments show that SNR/BER improvements can be translated into quality gains in reconstructed images. Moreover, compared to another non‐coherent detection algorithm, i.e., the iterative receiver based on expectation‐maximization algorithm for the space‐time coded OFDM systems, differentially space‐time coded OFDM systems suffer some quality loss in reconstructed images. With the efficiency and simplicity of decision‐feedback differential decoding, differentially space‐time coded OFDM is thus a feasible modulation scheme for applications such as wireless image over mobile devices (e.g., cell phones). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, a novel blind carrier frequency offset (CFO) estimation is proposed on the basis of the linearly constrained optimization for the uplink transmission of space–time block‐coded multicarrier code division multiple access systems. First, the full‐dimensional spatial‐and‐temporal data are formed to avoid violation of the second‐order statistics in the conventional receiver design. A set of weight vectors is then provided for acquiring each multipath signal from the desired user while the others get rejected. Finally, the estimated CFO is obtained in accordance with maximizing the well‐defined measurement function, which is formulated by collecting all the output powers of the receiver. A space–time averaging technique is also proposed to enhance the robustness to the finite sample effect. Simulation study confirms that with the proposed CFO estimator used in the preceding, the receiver can successfully achieve the same performance of the optimal receiver working in the absence of CFO. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we propose symbol‐based receivers for orthogonal frequency division multiplexing (OFDM) code‐division multiple‐access (CDMA) multiple‐input‐multiple‐output (MIMO) communications in multipath fading channels. For multiuser and multipath fading environments, both intersymbol interference and multiple‐access interference must be considered. We propose narrowband and wideband antennas and Wiener code filter for MIMO OFDM‐CDMA systems. The proposed receivers are updated symbol‐by‐symbol to achieve low computational complexity. Simulation results show that the proposed Wiener code filter can improve the system performance for the proposed adaptive antennas. The wideband antenna can achieve better error‐rate performance than that of the narrowband antenna when multipath effect exists. The convergence rate of the recursive least squares antennas is faster than that of the least mean square antennas. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The development of broadband wireless communication systems must cope with various performance‐limiting challenges that include channel fading as well as size and power limitations at the mobile units. As a promising method dealing with these challenges, space–time coding is effective in supporting reliable, high‐data‐rate transmissions: the major goal in broadband wireless communications. A survey of space–time coding schemes is provided in this paper. Targeting broadband wireless communications, the focus is on space–time coding in the presence of frequency‐ and time‐selective fading and the associated channel estimation and symbol recovery algorithms for both single user and multiuser settings. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we propose two schemes based on a full‐duplex network‐coded cooperative communication (FD‐NCC) strategy, namely, full‐duplex dynamic network coding (FD‐DNC) and full‐duplex generalized dynamic network coding (FD‐GDNC). The use of full‐duplex communication aims at improving the spectrum efficiency of a two‐user network where the users cooperatively transmit their independent information to a common destination. In the proposed FD‐NCC schemes, the self‐interference imposed by full‐duplexing is modeled as a fading channel, whose harmful effect can be partially mitigated by interference cancellation techniques. Nevertheless, our results show that, even in the presence of self‐interference, the proposed FD‐NCC schemes can outperform (in terms of outage probability) the equivalent half‐duplex network‐coded cooperative (HD‐NCC) schemes, as well as traditional cooperation techniques. Moreover, the ?‐outage capacity, that is, the maximum information rate achieved by the users given a target outage probability, is evaluated. Finally, we examine the use of multiple antennas at the destination node, which increases the advantage of the FD‐NCC (in terms of the diversity‐multiplexing trade‐off and ?‐outage capacity).  相似文献   

19.
Two multiple‐input multiple‐output (MIMO) schemes (a diversity scheme and a spatial multiplexing scheme) that employ the minimum variance distortionless response (MVDR) combining are proposed for multi‐cellular networks with cochannel interference. With the receive diversity provided by the MVDR combining, the proposed diversity scheme can be benefited by both the transmit diversity and the receive diversity, also, the proposed spatial multiplexing scheme can be benefited by both the receive diversity and the spatial multiplexing. The proposed MIMO schemes do not require the space‐time coding or the successive interference cancellation, thus they can result in less computational complexity than space‐time block code (STBC) and vertical‐Bell Labs layered space‐time (V‐BLAST). We show that the capacity of the proposed diversity scheme is close to or larger than that of STBC for the noise‐corrupted case and is much larger than that of STBC for the interference‐corrupted case. We also show that the capacity of the proposed spatial multiplexing scheme can be much larger than that of V‐BLAST for the interference‐corrupted case and the noise‐corrupted case, and the proposed spatial multiplexing scheme can achieve good compromise between diversity and spatial multiplexing. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Single carrier‐frequency division multiple access (SC‐FDMA) has been adopted as the uplink transmission standard in fourth generation cellular network to enable the power efficiency transmission in mobile station. Because multiuser MIMO (MU‐MIMO) is a promising technology to fully exploit the channel capacity in mobile radio network, this paper investigates the uplink transmission of SC‐FDMA systems with orthogonal space frequency block codes (SFBC). Two linear MU‐MIMO receivers, orthogonal SFBC (OSFBC) and minimum mean square error (MMSE), are derived for the scenarios with limited number of users or adequate receive antennas at base station. In order to effectively eliminate the multiple access interference (MAI) and fully exploit the capacity of MU‐MIMO channel, we propose a turbo MU‐MIMO receiver, which iteratively utilizes the soft information from maximum a posteriori decoder to cancel the MAI. By the simulation results in several typical MIMO channels, we find that the proposed MMSE MU‐MIMO receiver outperforms the OSFBC receiver over 1 dB at the cost of higher complexity. However, the proposed turbo MU‐MIMO receivers can effectively cancel the MAI under overloaded channel conditions and really achieve the capacity of MU‐MIMO channel. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号