首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanical properties, flame retardancy, hot‐air ageing, and hot‐oil ageing resistance of ethylene‐vinyl acetate rubber (EVM)/hydrogenated nitrile‐butadiene rubber (HNBR)/magnesium hydroxide (MH) composites were studied. With increasing HNBR fraction, elongation at break and tear strength of the EVM/HNBR/MH composites increased, whereas the limited oxygen index and Shore A hardness decreased slightly. Hot‐air ageing resistance and hot‐oil ageing resistance of the composites became better with increasing HNBR fraction. Thermal gravimetric analysis results demonstrated that the presence of MH and low HNBR fraction could improve the thermal stability of the composites. Differential scanning calorimeter revealed that the glass transition temperature (Tg) of the composites shifted toward low temperatures with increasing HNBR fraction, which was also confirmed by dynamic mechanical thermal analysis. Atomic force microscope images showed MH has a small particle size and good dispersion in the composites with high HNBR fraction. The flame retardancy, extremely good hot‐oil ageing, and hot‐air ageing resistance combined with good mechanical properties performance in a wide temperature range (?30°C to 150°C) make the EVM/HNBR/MH composites ideal for cables application. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
The properties of recycled low temperature biodegradable polycaprolactone‐based thermoplastic polyurethane (rTPU), filled with different types of organically modified montmorillonite (MMT) prepared by two‐roll milling, were studied. The dependence of rTPU properties on the mastication time and clays content was determined by various structural and physical testing methods. Results show that the melt flow and mechanical properties of rTPU deteriorate with increasing of mastication time, but thermal properties were affected only slightly. rTPU/MMT composites show exfoliated or intercalated structures depending on the nature of organic modifier of clay. MMT reduces slightly rTPU tensile and melt flow properties, but accelerates hydrolytic degradation process. During degradation the weight loss and polydispersity increase significantly in the presence of MMT, but it does not accelerate crystallinity changes. The degradation of rTPU composites with higher hydrophilicity organoclays proceeds faster than that with hydrophobic ones due to the relatively higher interaction with polymer matrix. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
Poly(styrene‐co‐butadiene) rubber (SBR) and polybutadiene rubber (BR)/clay nanocomposites have been prepared. The effects of the incorporation of inorganically and organically modified clays on the vulcanization reactions of SBR and BR were analysed by rheometry and differential scanning calorimetry. A reduction in scorch time (ts1) and optimum time (t95) was observed for both the rubbers when organoclay was added and this was attributed to the amine groups of the organic modifier. However, ts1 and t95 were further increased as the clay content was increased. A reduction in torque value was obtained for the organoclay nanocomposites, indicating a lower number of crosslinks formed. The organoclays favoured the vulcanization process although the vulcanizing effect was reduced with increasing clay content. The tensile strength and elongation of SBR were improved significantly with organoclay. The improvement of the tensile properties of BR with organoclay was less noticeable than inorganic‐modified clay. Nevertheless, these mechanical properties were enhanced with addition of clay. The mechanical properties of the nanocomposites were dependent on filler size and dispersion, and also compatibility between fillers and the rubber matrix. Copyright © 2004 Society of Chemical Industry  相似文献   

4.
The preparation and properties of poly(4‐methyl‐1‐pentene) (PMP)/clay nanocomposites are reported. Melt intercalation of PMP is carried out with organoclays of different cation/charge exchange capacities and modifiers to facilitate intercalation of the polymer into the silicate layers. The effect of modifiers on the structure and properties of PMP/clay nanocomposites is explored. XRD patterns confirm the intercalation of polymer in the layered silicates as evidenced by the increase in the inter‐layer spacing which is dependent on the type of modifier used. Dynamic mechanical analysis shows increments in the storage modulus over the temperature range studied for all of the three clays, but the extent depends on the type of clay modifier used. The coefficient of thermal expansion is lower for all of the nanocomposites, as compared to the pristine polymer, indicating improved dimensional stability Copyright © 2003 Society of Chemical Industry  相似文献   

5.
Summary: Hydrogenated acrylonitrile butadiene rubber (HNBR) was melt compounded with montmorillonite (MMT) and organophilic modified MMTs prior to sulfur curing. In contrast to the micro‐composite formation resulting from the compounding of the HNBR and pristine MMT, the modified MMTs (i.e., octadecylamine: MMT‐ODA, octadecyltrimethylamine: MMT‐ODTMA, methyltallow‐bis(2‐hydroxyethyl) quaternary ammonium: MMT‐MTH intercalants) produced nanocomposites. It was found that the organoclay with primary amine intercalant (cf. MMT‐ODA) gave confined structures along with the exfoliated/intercalated structures. This was traced to its reactivity with the curatives. By contrast, the organoclays containing less reactive quaternary ammonium compounds (cf. MMT‐ODTMA, MMT‐MTH) were exfoliated and intercalated based on X‐ray diffraction (XRD) and transmission electron microscopy (TEM) results. The hydroxyl functional groups of the MMT‐MTH supported the clay dispersion. The better adhesion between MMT‐MTH and HNBR was explained by hydrogen bonding between the hydroxyl groups of the intercalant and the acrylonitrile group of the HNBR matrix. This HNBR/MMT‐MTH nanocomposite showed the best mechanical properties as verified by tensile mechanical tests and dynamic mechanical thermal analysis (DMTA). The high tensile strength along with the high elongation at break for the rubber nanocomposites were attributed to the ability of the ‘clay network’ to dissipate the input energy upon uniaxial loading.

Scheme of failure development in rubber/organoclay mixes with poor (a) and good (b) dispersion of the clay layers.  相似文献   


6.
This work studied the effects of hydrogenated acrylonitrile‐butadiene rubber (HNBR) and precipitated silica (PSi) loadings in acrylonitrile‐butadiene rubber (NBR) filled with 60 parts per hundred of rubber (phr) of carbon black (CB) for oil‐resistant seal applications in contact with gasohol fuel. The cure characteristics, mechanical properties, and swelling behavior of HNBR/NBR blends reinforced with PSi before and after immersion in ethanol‐based oils (E10, E20, and E85) were then monitored. This work studied the effects of PSi loading in rubber compounds on the mechanical properties of the rubber blends. The results suggested that the scorch time of CB‐filled NBR/HNBR was not affected by HNBR loading, but the cure time, Mooney viscosity, and torque difference increased with HNBR content. The swelling of the blends in E85 oil were relatively low compared with those in E10 and E20 oils. The recommended NBR/HNBR blend ratio for oil‐resistant applications was 50/50. Tensile strength and elongation at break before and after immersion in gasohol oils increased with HNBR loading, and the opposite effect was found for tensile modulus and hardness. PSi filler had no effect on scorch time, but decreased the cure time of the blends. The swelling level of the blends slightly decreased with increasing PSi content. The recommended silica content for optimum reinforcement for black‐filled NBR/HNBR blend at 50/50 was 30 phr. The results in this work suggested that NBR/HNBR blends reinforced with 60 phr of CB and 30 phr of silica could be potentially used for rubber seals in contact with gasohol fuels. J. VINYL ADDIT. TECHNOL., 22:239–246, 2016. © 2014 Society of Plastics Engineers  相似文献   

7.
The effect of various modifiers on the structure and properties of clay/natural rubber nanocomposites are investigated with the aim to evaluate the effect of size and structure of the modifier. Nanocomposites are prepared by melt intercalation method. Mechanical properties of the cured rubber containing nanoclay are compared with the reference compound without the filler. No improvement of mechanical properties is observed for small organic cations; however, stress and strain at break of clay/rubber nanocomposites increase with rising number of octyl chains in the interlayer spaces of organo‐clays. Concerning organo‐cations with the same number of carbon atoms, more effective are the modifiers with several shorter carbon chains compared to those with one long chain. The composites exhibit hybrid structure of nanocomposite and microcomposite as revealed by X‐ray powder diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The details of the structure are supported by DMTA and hysteresis measurements. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
Novel organoclays were synthesized by several kinds of phosphonium cations to improve the dispersibility in matrix resin of composites and accelerate the curing of matrix resin. The possibility of the application for epoxy/clay nanocomposites and the thermal, mechanical, and adhesive properties were investigated. Furthermore, the structures and morphologies of the epoxy/clay nanocomposites were evaluated by transmission electron microscopy. Consequently, the corporation of organoclays with different types of phosphonium cations into the epoxy matrix led to different morphologies of the organoclay particles, and then the distribution changes of silicate layers in the epoxy resin influenced the physical properties of the nanocomposites. When high‐reactive phosphonium cations with epoxy groups were adopted, the clay particles were well exfoliated and dispersed. The epoxy/clay nanocomposite realized the high glass‐transition temperature (Tg) and low coefficient of thermal expansion (CTE) in comparison with those of neat epoxy resin. On the other hand, in the case of low‐reactive phoshonium cations, the dispersion states of clay particles were intercalated but not exfoliated. The intercalated clay did not influence the Tg and CTE of the nanocomposite. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
Polymer nano‐composites made with a matrix of anhydride‐cured diglycidyl ether of bisphenol A (DGEBA) and reinforced with organo‐montmorillonite clay were investigated. A sonication technique was used to process the epoxy/clay nano‐composites. The thermal properties of the nano‐composites were measured with dynamic mechanical analysis (DMA). The glass transition temperature Tg of the anhydride‐cured epoxy was higher than the room temperature (RT). For samples with 6.25 wt% (4.0 vol%) of clay, the storage modulus at 30°C and at (Tg + 15)°C was observed to increase 43% and 230%, respectively, relative to the value of unfilled epoxy. The clay reinforcing effect was evaluated using the Tandon‐Weng model for randomly oriented particulate filled composites. Transmission electron microscopy (TEM) examination of the nano‐composites prepared by sonication of clays in acetone showed well‐dispersed platelets in the nano‐composites. The clay nano‐platelets were observed to be well‐intercalated/expanded in the anhydride‐cured epoxy resin system. POLYM. COMPOS., 26:42–51, 2005. © 2004 Society of Plastics Engineers.  相似文献   

10.
Phthalonitrile‐based composites containing sodium montmorillonite (MMT0) and modified montmorillonites (MMT1 and MMT2) were prepared, respectively. The effect of functionalization, content and ball milling of the clay on the morphology, thermal mechanical, and thermal properties of the composites was thoroughly investigated by such methods as small angle X‐ray scattering, scanning electron microscopy, and dynamic, mechanical, and thermogravimetric analyses. FTIR and dynamic rheology measurements confirmed that the polymerization reaction of the PAEK‐CN prepolymer between individual clay layers had occurred and that intercalated tactoids and exfoliated/delaminated structures might have formed during the curing process. Small angle X‐ray scattering patterns reflected the increase of d‐spacing after clay modification and the subsequent possible exfoliation of the clay platelets within the phthalonitrile composites. Elevated heat distortion temperature and improved dynamic mechanical properties were observed for the PAEK‐CN/clay nanocomposites containing milled clay. Ball milling pristine clay improved the composite properties resulting from homogeneous dispersion to a certain extent, similar to the modified clay. In addition, composite properties depended on the content and modifier structures of the organoclays. POLYM. COMPOS., 37:3003–3014, 2016. © 2015 Society of Plastics Engineers  相似文献   

11.
Acrylonitrile–butadiene–styrene (ABS)–clay composite and intercalated nanocomposites were prepared by melt processing, using Na‐montmorillonite (MMT), several chemically different organically modified MMT (OMMT) and Na‐laponite clays. The polymer–clay hybrids were characterized by WAXD, TEM, DSC, TGA, tensile, and impact tests. Intercalated nanocomposites are formed with organoclays, a composite is obtained with unmodified MMT, and the nanocomposite based on synthetic laponite is almost exfoliated. An unintercalated nanocomposite is formed by one of the organically modified clays, with similar overall stack dispersion as compared to the intercalated nanocomposites. Tg of ABS is unaffected by incorporation of the silicate filler in its matrix upto 4 wt % loading for different aspect ratios and organic modifications. A significant improvement in the onset of thermal decomposition (40–44°C at 4 wt % organoclay) is seen. The Young's modulus shows improvement, the elongation‐at‐break shows reduction, and the tensile strength shows improvement. Notched and unnotched impact strength of the intercalated MMT nanocomposites is lower as compared to that of ABS matrix. However, laponite and overexchanged organomontmorillonite clay lead to improvement in ductility. For the MMT clays, the Young's modulus (E) correlates with the intercalation change in organoclay interlayer separation (Δd001) as influenced by the chemistry of the modifier. Although ABS‐laponite composites are exfoliated, the intercalated OMMT‐based nanocomposites show greater improvement in modulus. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
A polyether‐block‐amide copolymer was successfully blended with eight organoclays and one sodium montmorillonite by melt processing technique to form nanocomposites. X‐ray diffraction, thermogravimetry, differential scanning calorimeter analysis, dynamic mechanical analysis, tensile test, and linear viscoelastic analysis were used to characterize the hybrids. The molecular structure of the surfactants in the organoclays was found having a significant impact on the viscoelasticity and the d‐spacing gain of the clays. Hybrids from organoclays using surfactants with a single long alkyl tail had a higher d‐spacing gain than those from organoclays using surfactants with two long alkyl tails. The melt viscoelasticity was found excellently correlated to the d‐spacing gain and hence the linear viscoelasticity could be an excellent indicator for platelet organization in the composites. The melt viscoelasticity is fairly correlated to the tensile modulus and glass transition temperature of the soft and hard segment, implying that the platelet organization plays a role in these properties. Properties such as melting point, thermal degradation temperature, elongation at break, and tensile strength are not correlated to the viscoelasticity. The failure indicates that these properties are irrelevant to or less influenced by the platelet organization. POLYM. ENG. SCI., 47:235–243, 2007. © 2007 Society of Plastics Engineers.  相似文献   

13.
This investigation describes two methods to obtain rubber composites based on natural rubber (NR) and organophilic layered silicates. In order to improve the exfoliation and compatibilization of the organoclays with the rubber matrix, a new approach which involves swelling of the organoclays with an elastomer solution prior to compounding has been used. The effect of the addition during swelling of a coupling agent, namely bis(trietoxysilylpropyl)tetrasulfan (TESPT), on the behaviour of the composites was also investigated. The results show that a low amount of organoclay (10 phr) significantly improves the properties of natural rubber. This suggests a strong rubber–organoclay interaction which is attributed to a high degree of rubber intercalation into the nanosilicate galleries, as was confirmed from X‐ray diffraction. In addition, an ulterior improvement in the properties of the nanocomposites prepared by solution mixing is clearly observed, due to the better filler–rubber compatibility. An even further increase in the properties is observed by treating the silicate with a silane coupling agent. The silane functional groups modify the clay surface, thus reducing the surface energy, and consequently improving the compatibility with the rubber matrix. Copyright © 2004 Society of Chemical Industry  相似文献   

14.
Natural rubber nanocomposites were produced by melt‐mixing of natural rubber with organically modified silicates. For comparison, a pristine‐layered silicate and a nonlayered version [English Indian clay (EIC)] were also included in the study. The layered silicate used was sodium bentonite (BNT) and organoclays used were octadecylamine‐ modified montmorillonite (MMT‐ODA) and methyltallow bis‐2‐hydroxyethyl ammonium‐modified montmorillonite (MMT‐ TMDA). Accelerated sulfur system was used for the vulcanization of the nanocomposites. The dispersion of these silicates was studied by X‐ray diffraction and transmission electron microscopy. The organoclay‐incorporated composites exhibited faster curing and improved mechanical properties. The improvement in the mechanical properties of the composites followed the order MMT‐ODA > MMT‐TMDA > EIC > BNT. The property improvement was attributed to the intercalation/exfoliation of the organically modified silicates because of their high initial interlayer distance. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2537–2543, 2006  相似文献   

15.
A series of poly(succinic acid/sebacic acid/itaconic acid/butanediol/propanediol) bio‐based and non‐crystalline engineering elastomers (BEE) were obtained by changing the molar ratio of succinic acid (SA) to sebacic acid (SeA) from 5:5 (BEE‐5) to 8:2 (BEE‐8). We prepared bio‐based engineering elastomer composites (BEE/CB) by mixing BEE with carbon black N330. The low‐temperature and oil resistance properties of the BEE/CB composites were investigated in terms of low‐temperature brittleness, coefficient of cold resistance under compression, oil resistance test at different temperatures, and tensile properties. The results showed that the low‐temperature brittleness temperature of the BEE/CB composites ranged from ?50 to ?60°C and the coefficient of cold resistance under compression was 0.18 high at ?60°C for BEE‐7/CB and 0.23 high at ?40°C for BEE‐8/CB. The oil resistance properties of BEE‐7/CB were higher than those of nitrile‐butadiene rubber N240S (NBR N240S), and the oil resistance properties of BEE‐8/CB were even as high as those of nitrile‐butadiene rubber N220S (NBR N220S). © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42855.  相似文献   

16.
A series of clay pillaring agents with amino, olefin, and epoxy groups were synthesized. These pillaring agents were used to modify montmorillonite clay by ion‐exchange reactions. TGA studies showed that organoclays with imidazolium pillaring agents have a higher thermal stability than those with ammonium groups. The d‐spacings of organoclays were not affected by the pillaring agent functional groups and were sensitive to the size of pillaring agents. The dynamic‐mechanical properties of the resulting clay/epoxy composites determined by DMA were similar. The addition of these clays to this epoxy resin enhanced the Tg value of the resulting composites and greatly enhanced the storage moduli versus the pure epoxy resin by 1.6–1.8 times at 135°C. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
Composites based on natural rubber (NR) and containing organophilic and pristine layered silicates of natural and synthetic origin were produced by melt compounding and sulfur curing. The curing, thermomechanical, and mechanical properties of the mixes, which contained 10 phr (parts per hundred parts of rubber) silicates, were determined. The dispersion of the silicates was studied by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Organophilic clays accelerated the sulfur curing of NR, which was believed to occur because of a complexation reaction in which the amine groups of the clay intercalants participated. The property improvements caused by the fillers were ranked as follows: organophilic clays > pristine synthetic layered silicate (sodium fluorohectorite) > pristine natural clay (purified sodium bentonite) > precipitated nonlayered silica (used as a reference). This was attributed to partial intercalation of the organophilic clay by NR on the basis of XRD and TEM results and to the high aspect ratio of the fluorohectorite. Apart from intercalation, severe confinement (i.e., the collapse of the interlayer distance) of the organoclays was observed. This peculiar feature was traced to the formation of a zinc coordination complex, which extracted the amine intercalant of the organoclays, thus causing the collapse of the layers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 813–819, 2004  相似文献   

18.
The vulcanization behavior and mechanical properties of clay/fluoroelastomer nanocomposites produced by melt‐mixing of Dyneon FPO 3741 (a terpolymer of vinylidene fluoride, hexafluoropropylene, and tetrafluoroethylene) with 10 phr of unmodified montmorillonite (CloisiteNA) or di(hydrogenated tallow‐alkyl) dimethyl ammonium‐modified montmorillonites (Cloisite15A and Cloisite20A) were studied. The properties of clay/FKM nanocomposites were compared with composites prepared using 10 and 30 phr of carbon black. The effects of clay surfactant and surfactant concentration on the vulcanization behavior, mechanical, and dynamical properties of peroxide cured composites were studied. XRD results of cured composites showed a decrease in d‐spacing and indicated deintercalation of the clays after the vulcanization process. It was also found that organoclays retard the FKM peroxide vulcanization process. Significantly, higher maximum torque on vulcanization was obtained with organoclays versus unmodified clay and carbon black. Although the morphologies of organoclay/FKM nanocomposites studied by XRD and TEM suggest similar intercalated/exfoliated structures, the organoclay with the lowest concentration of surfactant (95 meq/100 g clay) resulted in the highest increase in torque, modulus, hardness, and tear strength in the clay/FKM nanocomposites. It was also found that organoclays can increase both the hydrodynamic reinforcement and hysteresis loss of FKM nanocomposites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
A series of nanocomposites prepared by melt‐blending of cloisite‐based organoclays with poly(ethylene‐vinylacetate) (EVA) and neutralized poly (ethylene‐methacrylic acid) (EMA) copolymers were investigated via DSC, small‐angle X‐ray scattering (SAXS), and rheological techniques. SAXS results indicated partial clay exfoliation in all samples. In both EMA and EVA systems, the nominal melting temperature Tm and bulk crystallinity are not significantly affected by the presence of organoclays, suggesting that clay particles are predominantly confined in the amorphous phase. In rheological measurements (above Tm), the EVA‐clay system demonstrated a solid‐like rheological behavior under the small‐strain oscillatory shear, yet it was able to yield and flow under a steady shear, which is the characteristic of physical crosslinking. In contrast, the EMA‐clay system exhibited a melt‐like rheological behavior, where the influence of organoclay on the thermorheological behavior of the EMA composite was quite minimal. We propose that the carbonyl groups of vinylacetate in EVA interact with the clay surface, resulting in a strong physically crosslinking like interaction in the melt. On the other hand, the interaction between EMA and clay is weak because of repulsion between carboxyl anions and negatively charged clay surface.  相似文献   

20.
In this article, we report the influence of organic modifier structure (alkyl chain length C8-C20, single vs ditallow) and thereby, the effect of hydrophobicity on the structure, thermal and mechanical properties of poly(methyl methacrylate) (PMMA)-clay hybrids. Melt processed PMMA-clay hybrids were characterized using wide-angle X-ray diffraction, transmission electron microscopy, and differential scanning calorimetry. The organoclays having an alkyl chain length of more than 12 CH2 groups resulted in the formation of nanocomposites. The glass transition temperature (Tg) of PMMA increased in the presence of clay. The mean-field lattice model was used to predict the free energy for nanocomposite formation, which showed a reasonable match with the experimental results and provided a general guideline for the proper selection of polymer and organoclay (ie, organic modifier) to obtain nanocomposite. Tensile modulus showed maximum improvement of 58% for the nanocomposites compared to 9% improvement for the composites. Tensile modulus increased with increases in the alkyl chain length of the organic modifier and clay loading. The level of improvement for the tensile properties of nanocomposites prepared from primary and secondary ammonium-modified clay is the same as that obtained with the commercial organoclays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号