首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over the past years, several preclinical in vitro and ex vivo models have been developed that helped to understand some of the critical aspects of intestinal functions in health and disease such as inflammatory bowel disease (IBD). However, the translation to the human in vivo situation remains problematic. The main reason for this is that these approaches fail to fully reflect the multifactorial and complex in vivo environment (e.g., including microbiota, nutrition, and immune response) in the gut system. Although conventional models such as cell lines, Ussing chamber, and the everted sac are still used, increasingly more sophisticated intestinal models have been developed over the past years including organoids, InTESTine™ and microfluidic gut-on-chip. In this review, we gathered the most recent insights on the setup, advantages, limitations, and future perspectives of most frequently used in vitro and ex vivo models to study intestinal physiology and functions in health and disease.  相似文献   

2.
Compelling evidence is building for the involvement of the complex, bidirectional communication axis between the gastrointestinal tract and the brain in neuropsychiatric disorders such as depression. With depression projected to be the number one health concern by 2030 and its pathophysiology yet to be fully elucidated, a comprehensive understanding of the interactions between environmental factors, such as stress and diet, with the neurobiology of depression is needed. In this review, the latest research on the effects of stress on the bidirectional connections between the brain and the gut across the most widely used animal models of stress and depression is summarised, followed by comparisons of the diversity and composition of the gut microbiota across animal models of stress and depression with possible implications for the gut–brain axis and the impact of dietary changes on these. The composition of the gut microbiota was consistently altered across the animal models investigated, although differences between each of the studies and models existed. Chronic stressors appeared to have negative effects on both brain and gut health, while supplementation with prebiotics and/or probiotics show promise in alleviating depression pathophysiology.  相似文献   

3.
Increased gut permeability is suggested to be involved in the pathogenesis of a growing number of disorders. The altered intestinal barrier and the subsequent translocation of bacteria or bacterial products into the internal milieu of the human body induce the inflammatory state. Gut microbiota maintains intestinal epithelium integrity. Since dysbiosis contributes to increased gut permeability, the interventions that change the gut microbiota and correct dysbiosis are suggested to also restore intestinal barrier function. In this review, the current knowledge on the role of biotics (probiotics, prebiotics, synbiotics and postbiotics) in maintaining the intestinal barrier function is summarized. The potential outcome of the results from in vitro and animal studies is presented, and the need for further well-designed randomized clinical trials is highlighted. Moreover, we indicate the need to understand the mechanisms by which biotics regulate the function of the intestinal barrier. This review is concluded with the future direction and requirement of studies involving biotics and gut barrier.  相似文献   

4.
The liver directly accepts blood from the gut and is, therefore, exposed to intestinal bacteria. Recent studies have demonstrated a relationship between gut bacteria and nonalcoholic fatty liver disease (NAFLD). Approximately 10–20% of NAFLD patients develop nonalcoholic steatohepatitis (NASH), and endotoxins produced by Gram-negative bacilli may be involved in NAFLD pathogenesis. NAFLD hyperendotoxicemia has intestinal and hepatic factors. The intestinal factors include impaired intestinal barrier function (leaky gut syndrome) and dysbiosis due to increased abundance of ethanol-producing bacteria, which can change endogenous alcohol concentrations. The hepatic factors include hyperleptinemia, which is associated with an excessive response to endotoxins, leading to intrahepatic inflammation and fibrosis. Clinically, the relationship between gut bacteria and NAFLD has been targeted in some randomized controlled trials of probiotics and other agents, but the results have been inconsistent. A recent randomized, placebo-controlled study explored the utility of lubiprostone, a treatment for constipation, in restoring intestinal barrier function and improving the outcomes of NAFLD patients, marking a new phase in the development of novel therapies targeting the intestinal barrier. This review summarizes recent data from studies in animal models and randomized clinical trials on the role of the gut–liver axis in NAFLD pathogenesis and progression.  相似文献   

5.
Necrotizing enterocolitis (NEC) is an important neonatal disease with a high mortality rate. The pathophysiology is unclear but epidemiologic studies suggest that hypoxia and infection are important risk factors. In this review we discuss the effect of hypoxia and platelet-activating factor (PAF) on intestinal blood flow and intestinal necrosis, and implicate PAF as an important mediator in hypoxia-induced intestinal injury. Finally we provide evidence that PAF may be important in neonatal NEC. Based on a paper presented at the Third International Conference on Platelet-Activating Factor and Structurally Related Alkyl Ether Lipids, Tokyo, Japan, May 1989.  相似文献   

6.
Intestinal tract is the boundary that prevents harmful molecules from invading into the mucosal tissue, followed by systemic circulation. Intestinal permeability is an index for intestinal barrier integrity. Intestinal permeability has been shown to increase in various diseases—not only intestinal inflammatory diseases, but also systemic diseases, including diabetes, chronic kidney dysfunction, cancer, and cardiovascular diseases. Chronic increase of intestinal permeability is termed ‘leaky gut’ which is observed in the patients and animal models of these diseases. This state often correlates with the disease state. In addition, recent studies have revealed that gut microbiota affects intestinal and systemic heath conditions via their metabolite, especially short-chain fatty acids and lipopolysaccharides, which can trigger leaky gut. The etiology of leaky gut is still unknown; however, recent studies have uncovered exogenous factors that can modulate intestinal permeability. Nutrients are closely related to intestinal health and permeability that are actively investigated as a hot topic of scientific research. Here, we will review the effect of nutrients on intestinal permeability and microbiome for a better understanding of leaky gut and a possible mechanism of increase in intestinal permeability.  相似文献   

7.
Non-alcoholic fatty liver disease (NAFLD) represents an increasing cause of liver disease worldwide, mirroring the epidemics of obesity and metabolic syndrome. As there are still no licensed medications for treating the disease, there is an ongoing effort to elucidate the pathophysiology and to discover new treatment pathways. An increasing body of evidence has demonstrated a crosstalk between the gut and the liver, which plays a crucial role in the development and progression of liver disease. Among other intestinal factors, gut permeability represents an interesting factor at the interface of the gut–liver axis. In this narrative review, we summarise the evidence from human studies showing the association between increased gut permeability and NAFLD, as well as with type-2 diabetes and obesity. We also discuss the manipulation of the gut permeability as a potential therapeutical target in patients with NAFLD.  相似文献   

8.
Dietary polyunsaturated fatty acid (PUFA) supplementation has been shown to reduce the incidence of necrotizing enterocolitis (NEC) in a recent randomized, controlled trial. These compounds are known to modulate the inflammatory cascade and to influence intestinal health in a variety of ways. Although the pathophysiology of NEC is not well understood, recent evidence suggests that platelet-activating factor (PAF) is a key endogenous mediator of intestinal necrosis in animals. Using a neonatal rat model of NEC that includes the key risk factors of asphyxia and formula feeding, we investigated the role of dietary PUFA supplementation on the incidence and pathophysiology of NEC. Our findings suggest that PUFA reduce the incidence of NEC by modulating PAF metabolism and endotoxin translocation.  相似文献   

9.
10.
11.
12.
Anthocyanins from different plant sources have been shown to possess health beneficial effects against a number of chronic diseases. To obtain any influence in a specific tissue or organ, these bioactive compounds must be bioavailable, i.e., effectively absorbed from the gut into the circulation and transferred to the appropriate location within the body while still maintaining their bioactivity. One of the key factors affecting the bioavailability of anthocyanins is their transport through the gut epithelium. The Caco-2 cell line, a human intestinal epithelial cell model derived from a colon carcinoma, has been proven to be a good alternative to animal studies for predicting intestinal absorption of anthocyanins. Studies investigating anthocyanin absorption by Caco-2 cells report very low absorption of these compounds. However, the bioavailability of anthocyanins may be underestimated since the metabolites formed in the course of digestion could be responsible for the health benefits associated with anthocyanins. In this review, we critically discuss recent findings reported on the anthocyanin absorption and metabolism by human intestinal Caco-2 cells.  相似文献   

13.
The human gut is the largest organ with immune function in our body, responsible for regulating the homeostasis of the intestinal barrier. A diverse, complex and dynamic population of microorganisms, called microbiota, which exert a significant impact on the host during homeostasis and disease, supports this role. In fact, intestinal bacteria maintain immune and metabolic homeostasis, protecting our organism against pathogens. The development of numerous inflammatory disorders and infections has been linked to altered gut bacterial composition or dysbiosis. Multiple factors contribute to the establishment of the human gut microbiota. For instance, diet is considered as one of the many drivers in shaping the gut microbiota across the lifetime. By contrast, alcohol is one of the many factors that disrupt the proper functioning of the gut, leading to a disruption of the intestinal barrier integrity that increases the permeability of the mucosa, with the final result of a disrupted mucosal immunity. This damage to the permeability of the intestinal membrane allows bacteria and their components to enter the blood tissue, reaching other organs such as the liver or the brain. Although chronic heavy drinking has harmful effects on the immune system cells at the systemic level, this review focuses on the effect produced on gut, brain and liver, because of their significance in the link between alcohol consumption, gut microbiota and the immune system.  相似文献   

14.
Parkinson’s disease (PD) is a neurodegenerative disorder, caused by, so far, unknown pathogenetic mechanisms. There is no doubt that pro-inflammatory immune-mediated mechanisms are pivotal to the pathogenicity and progression of the disease. In this review, we highlight the binary role of microglia activation in the pathophysiology of the disorder, both neuroprotective and neuromodulatory. We present how the expression of several cytokines implicated in dopaminergic neurons (DA) degeneration could be used as biomarkers for PD. Viral infections have been studied and correlated to the disease progression, usually operating as trigger factors for the inflammatory process. The gut–brain axis and the possible contribution of the peripheral bowel inflammation to neuronal death, mainly dopaminergic neurons, seems to be a main contributor of brain neuroinflammation. The role of the immune system has also been analyzed implicating a-synuclein in the activation of innate and adaptive immunity. We also discuss therapeutic approaches concerning PD and neuroinflammation, which have been studied in experimental and in vitro models and data stemming from epidemiological studies.  相似文献   

15.
Chronic hepatitis C virus (HCV) infection is an important cause of morbidity and mortality in people coinfected with human immunodeficiency virus (HIV). Several studies have shown that HIV infection promotes accelerated HCV hepatic fibrosis progression, even with HIV replication under full antiretroviral control. The pathogenesis of accelerated hepatic fibrosis among HIV/HCV coinfected individuals is complex and multifactorial. The most relevant mechanisms involved include direct viral effects, immune/cytokine dysregulation, altered levels of matrix metalloproteinases and fibrosis biomarkers, increased oxidative stress and hepatocyte apoptosis, HIV-associated gut depletion of CD4 cells, and microbial translocation. In addition, metabolic alterations, heavy alcohol use, as well drug use, may have a potential role in liver disease progression. Understanding the pathophysiology and regulation of liver fibrosis in HIV/HCV co-infection may lead to the development of therapeutic strategies for the management of all patients with ongoing liver disease. In this review, we therefore discuss the evidence and potential molecular mechanisms involved in the accelerated liver fibrosis seen in patients coinfected with HIV and HCV.  相似文献   

16.
The intestinal microbiome, the largest reservoir of microorganisms in the human body, plays an important role in neurological development and aging as well as in brain disorders such as an ischemic stroke. Increasing knowledge about mediators and triggered pathways has contributed to a better understanding of the interaction between the gut-brain axis and the brain-gut axis. Intestinal bacteria produce neuroactive compounds and can modulate neuronal function, which affects behavior after an ischemic stroke. In addition, intestinal microorganisms affect host metabolism and immune status, which in turn affects the neuronal network in the ischemic brain. Here we discuss the latest results of animal and human research on two-way communication along the gut-brain axis in an ischemic stroke. Moreover, several reports have revealed the impact of an ischemic stroke on gut dysfunction and intestinal dysbiosis, highlighting the delicate play between the brain, intestines and microbiome after this acute brain injury. Despite our growing knowledge of intestinal microflora in shaping brain health, host metabolism, the immune system and disease progression, its therapeutic options in an ischemic stroke have not yet been fully utilized. This review shows the role of the gut microflora-brain axis in an ischemic stroke and assesses the potential role of intestinal microflora in the onset, progression and recovery post-stroke.  相似文献   

17.
Major depressive disorder (MDD) is a chronic disease whose neurological basis and pathophysiology remain poorly understood. Initially, it was proposed that genetic variations were responsible for the development of this disease. Nevertheless, several studies within the last decade have provided evidence suggesting that environmental factors play an important role in MDD pathophysiology. Alterations in epigenetics mechanism, such as DNA methylation, histone modification and microRNA expression could favor MDD advance in response to stressful experiences and environmental factors. The aim of this review is to describe genetic alterations, and particularly altered epigenetic mechanisms, that could be determinants for MDD progress, and how these alterations may arise as useful screening, diagnosis and treatment monitoring biomarkers of depressive disorders.  相似文献   

18.
Photodynamic therapy (PDT) is a promising non-invasive phototherapeutic approach for cancer therapy that can eliminate local tumor cells and produce systemic antitumor immune responses. In recent years, significant efforts have been made in developing strategies to further investigate the immune mechanisms triggered by PDT. The majority of in vitro experimental models still rely on the two-dimensional (2D) cell cultures that do not mimic a three-dimensional (3D) cellular environment in the human body, such as cellular heterogeneity, nutrient gradient, growth mechanisms, and the interaction between cells as well as the extracellular matrix (ECM) and therapeutic resistance to anticancer treatments. In addition, in vivo animal studies are highly expensive and time consuming, which may also show physiological discrepancies between animals and humans. In this sense, there is growing interest in the utilization of 3D tumor models, since they precisely mimic different features of solid tumors. This review summarizes the characteristics and techniques for 3D tumor model generation. Furthermore, we provide an overview of innate and adaptive immune responses induced by PDT in several in vitro and in vivo tumor models. Future perspectives are highlighted for further enhancing PDT immune responses as well as ideal experimental models for antitumor immune response studies.  相似文献   

19.
Chronic radiation cystitis (CRC) is a consequence of pelvic radiotherapy and affects 5–10% of patients. The pathology of CRC is without curative treatment and is characterized by incontinence, pelvic pain and hematuria, which severely degrades patients’ quality of life. Current management strategies rely primarily on symptomatic measures and have certain limitations. Thanks to a better understanding of the pathophysiology of radiation cystitis, studies targeting key manifestations such as inflammation, neovascularization and cell atrophy have emerged and are promising avenues for future treatment. However, the mechanisms of CRC are still better described in animal models than in human models. Preclinical studies conducted to elucidate the pathophysiology of CRC use distinct models and are most often limited to specific processes, such as fibrosis, vascular damage and inflammation. This review presents a synthesis of experimental studies aimed at improving our understanding of the molecular mechanisms at play and identifying key processes in CRC.  相似文献   

20.
Retinal degenerative diseases lead to irreversible blindness. Decades of research into the cellular and molecular mechanisms of retinal diseases, using either animal models or human cell-derived 2D systems, facilitated the development of several therapeutic interventions. Recently, human stem cell-derived 3D retinal organoids have been developed. These self-organizing 3D organ systems have shown to recapitulate the in vivo human retinogenesis resulting in morphological and functionally similar retinal cell types in vitro. In less than a decade, retinal organoids have assisted in modeling several retinal diseases that were rather difficult to mimic in rodent models. Retinal organoids are also considered as a photoreceptor source for cell transplantation therapies to counteract blindness. Here, we highlight the development and field’s improvements of retinal organoids and discuss their application aspects as human disease models, pharmaceutical testbeds, and cell sources for transplantations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号