首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The loop tack, peel, and shear strength of crosslinked natural rubber adhesive were studied using coumarone‐indene and toluene as the tackifying resin and solvent, respectively. The concentration of benzoyl peroxide‐the crosslinking agent—was varied from 1 to 4 parts per hundred parts of rubber (phr). A SHEEN hand coater was used to coat the adhesive on the polyethylene terephthalate substrate at various coating thickness. Loop tack, peel, and shear strength were measured by a Llyod adhesion tester operating at 30 cm min?1. Result shows that loop tack and peel strength of the adhesive increases up to 2 phr of benzoyl peroxide concentration after which it decreases with further benzoyl peroxide content. This observation is attributed to the optimum crosslinking of natural rubber where optimum cohesive and adhesive strength occurs at 2 phr peroxide loading. However, for the shear strength, it increases with increasing benzoyl peroxide concentration where higher rate of increase is observed after 2 phr of peroxide content, an observation which is associated to the steady increase in cohesive strength of crosslinked rubber. In all cases, the adhesion properties of adhesives increase with increase in coating thickness. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
The viscosity, tack, and peel strength of a natural rubber (SMR 20)–based pressure-sensitive adhesive (PSA) was studied using coumarone-indene resin as the tackifier. The resin loading was varied from 0–80 parts per hundred parts of rubber (phr). Toluene was used as the solvent throughout the experiment. The viscosity of PSA was measured using a Haake Rotary Viscometer whereas loop tack and peel strength were determined using a Lloyd Adhesion Tester. PSA was coated onto the substrates using a SHEEN hand coater to give a coating thickness of 60 μm and 120 μm. Results show that the viscosity and tack of the adhesive increases with resin content due to the concentration effect of tackifier resin. However, for the peel strength, it increases up to 40 phr of resin for both coating thickness, an observation that is attributed to the wettability of substrates.  相似文献   

3.
交联型聚丙烯酸酯压敏胶乳液的合成及其粘接性能的研究   总被引:6,自引:5,他引:6  
利用功能单体的自交联作用,采用种子半连续乳液聚合的方法进行多元共聚,合成了兼具较高剪切强度和剥离强度的交联型聚丙烯酸酯压敏胶乳液。运用DSC、DMA及粘接性能测试分别考察了聚合物的玻璃化转变温度、动态力学性能和压敏胶粘性能,并分析讨论了三者之间的相互关系。结果表明:功能单体所产生适度交联作用能较好地协调聚合物的内聚力和粘合力之间的平衡,使其具有较好的粘接及力学性能。聚合物的Tg、粘弹性等物理参数可用于评估其内聚力及粘接强度。  相似文献   

4.
This study investigated the photocrosslinking of solvent-based acrylic pressure-sensitive adhesives (PSA) containing selected photoinitiators type I, known as α-cleavage photoinitiators. Photocrosslinking of PSA, especially of acrylic PSA, is well established crosslinking process using the UV radiation technology. UV-initiated crosslinking of acrylic PSA allows the synthesis of the wide range of UV-crosslinkable PSA with the interesting features. Especially, the important balances of properties such as adhesive and cohesive strength which are typically critical for the application performance can be achieved by this technology. The selection of suitable photoinitiator plays an important role to obtain the optimum properties of acrylic PSA including tack, peel adhesion, and shear strength. In this study, the investigations on different saturated conventional photoinitiators of type I for solvent-based PSA were carried out. The effects of photoinitiator concentration, UV crosslinking time and UV dose on the tack, peel strength, and shear strength were explored in detail for guiding the choice of photoinitiators to fabricate advanced PSA for industrial usage.  相似文献   

5.
    
The adhesion properties, i.e. viscosity, tack, and peel strength of pressure-sensitive adhesives prepared from natural rubber/epoxidized natural rubber blends were investigated using coumarone-indene resin and toluene as the tackifier and solvent respectively. One grade of natural rubber (SMR 10) and two grades of epoxidized natural rubbers (ENR 25 and ENR 50) were used to prepare the rubber blends with blend ratio ranging from 0 to 100%. Coumarone-indene resin content was fixed at 40 parts per hundred parts of rubber (phr) in the adhesive formulation. The viscosity of adhesive was measured by a HAAKE Rotary Viscometer whereas loop tack and peel strength was determined using a Lloyd Adhesion Tester operating at 30 cm/min. Results show that the viscosity of the adhesive passes through a minimum value at 20% blend ratio. For loop tack and peel strength, it indicates a maximum at 60% blend ratio for SMR 10/ENR 25 and SMR 10/ENR 50 systems. However, for ENR 25/ENR 50 blend, maximum value is observed at 80% blend ratio. SMR 10/ENR 25 blend consistently exhibits the best adhesion property in this study, an observation which is attributed to the optimum compatibility between rubbers and wettability of adhesive on the substrate. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
环保型低剥离力压敏胶的研制   总被引:2,自引:0,他引:2  
采用半连续乳液聚合法制备了一种丙烯酸类水基型低剥离力压敏胶。主要考察了甲基丙烯酸(MAA)等功能单体和外加交联剂对产物性能的影响。实验表明,随MAA等亲水单体用量的增多,乳液粘度会增大,而引入交联单体在实验范围内可显著降低剥离强度。功能单体用量有一合适范围。选用较高反应活性的氨基树脂作交联剂,可改善耐温性,保持初粘力,得到综合性能较好的低剥离力压敏胶。  相似文献   

7.
    
Tack properties and peeling behavior of crosslinked polyacrylic pressure-sensitive adhesives were investigated. The model adhesive was a crosslinked poly(n-butyl acrylate-acrylic acid) random copolymer with an acrylic acid content of 5?mol% with various crosslinking degrees. Tack was measured using a probe tack test with probe rates of 1 and 10?mm/s and various contact time. The tack increased with contact time. The degree of tack rising with contact time decreased with an increase in crosslinking degree for 10?mm/s, while the tendency was opposite for 1?mm/s. The temperature dependency of tack was measured with a contact time of 30?s. The tack peak shifted to higher temperatures with an increase in crosslinking degree and probe rate. Peeling behavior was observed using high-speed microscopy. The peeling behavior changed from A to C with the decrease of peeling rate and crosslinking degree. A: Cavitation and peeling progressed simultaneously at maximum stress at 10?mm/s independent on the crosslinking degree. B: Cavitation occurred at the edge of the probe at low stress and spread to the center of the probe at maximum stress at 1?mm/s and high crosslinking degree, then peeled out. C: After B, fibrillation occurred at 1?mm/s with low crosslinking degree. The change of peeling behavior was caused by the following: the interfacial adhesion increased, while the cohesive strength decreased as crosslinking degree and probe rate decreased.  相似文献   

8.
介绍了一种80℃固化,耐热130℃结构胶粘剂,该胶具有良好的综合性能。  相似文献   

9.
曹通远  杨帆  朱松 《粘接》2007,28(5):1-3
研究了热熔压敏胶初粘性、剥离强度与流变学行为之间的关系。研究发现,用温度扫描方法得到的流变曲线与压敏胶主曲线较为一致,因此可以将其转化为不同弛豫时间下的流变行为。通过调整液体树脂含量,设计出一系列橡胶平台模量保持相对不变的同时,具有不同玻璃化温度的压敏胶配方,其中玻璃化温度相同的压敏胶配方,具有基本相同的环形初粘力和剥离强度。  相似文献   

10.
The formation of sawtooth-shaped stringiness during 90° peeling was investigated using crosslinked poly(n-butyl acrylate–acrylic acid) and poly(2-ethylhexyl acrylate–acrylic acid) random copolymers with an acrylic acid content of 5 wt.% and different crosslinking degrees as pressure-sensitive adhesives (PSAs). The gel fraction was measured by toluene extraction of PSA, and it increased with crosslinker content for both systems. The observed stringiness was sawtooth-shaped, but there were three different types; both the typical sawtooth shape and the frame formed at the front tip with interfacial failure, and the sawtooth shape formed with cohesive failure. The change in the stringiness shape was affected strongly by the gel fraction of PSA. The peel rate under constant peel load was measured and revealed that the peel rate was lowest upon formation of the front frame type. A good relation was found between peel rate and peel strength, with a greater peel strength upon formation of the front frame type. The concentrated stress at the peeling tip is released by progress of peeling and deformation of the adhesive layer (stringiness) for no frame type. On the other hand, the sufficient interfacial adhesion delays the progress of peeling, and the applied larger stress causes cavitation in the PSA layer for front frame type. The formed cavity grows and the front frame type formed as a result. That is, internal deformation occurred preferentially over peeling. In order to improve the peel strength, the front frame type is the most useful stringiness shape.  相似文献   

11.
The peel, probe tack, and loop tack adhesion characteristics of peroxide-cured silicone pressure-sensitive adhesives (PSAs) are investigated with respect to adhesive composition, peroxide concentration, and type of substrate. These adhesion properties decrease with increasing benzoyl peroxide concentration and their adhesion values vary noticeably with the substrate type. However, the loop adhesion to 'difficult-to-wet' surfaces (e.g. silicone-coated substrates) can be selectively enhanced by incorporating an organofunctional silicone into the silicone PSA mixture. The enhancement in adhesion is attributed to a wetting/adhesion improvement at the adhesive- substrate interface, and relates to the type of organosilicone modifier in the order aminosilicone > vinylsilicone > epoxysilicone > fluorosilicone.  相似文献   

12.
采用半连续种子乳液聚合法制得纯丙乳液压敏胶。研究了胶粘剂厚度、基材厚度、基材类型对压敏胶常规力学性能影响。结果发现,各因素对压敏胶的初粘性和剥离强度影响较大;基材厚度及类型对持粘性影响较小;胶层厚度为15μm左右的压敏胶具有较高性价比。  相似文献   

13.
飞机修补胶是一种可在较低温度固化具有耐高温性能的环氧酸酐型胶粘剂。该胶在100℃固化3h,常温剪切强度为30.6MPa、175℃剪切强度为12.8MPa、板剥离强度为4.1kN/m、蜂窝剥离强度为3.3kN/m;具有良好的耐介质浸泡、耐热老化、耐湿热老化等综合性能。该胶对表面采用不同方法处理的多种金属和非金属材料均有较好的粘接强度。在-60℃~175℃范围内,用于板—板和板—芯各种胶接部件的修补粘合。  相似文献   

14.
We performed the polymerization of 3-amino-1,2,4-triazole (ATA), an insulator material, in acidic aqueous solution with ammonium persulfate, as oxidant agent. The new material, conveniently doped, turned out to be a semiconductor tetramer. The characterization was carried out using physical and spectroscopic techniques (elemental analysis, infrared spectroscopy, 1H NMR, 13C NMR and mass spectra). Thermogravimetric analysis (TGA) indicated that this oligomer enhances thermal stability of starting material. The room temperature electrical conductivity of the synthesized oligomer (OATA) was 3.1 × 10−4 S cm−1.The kinetic polymerization was analyzed by UV–vis spectroscopy, taking into account the pH dependence, monomer–oxidant ratio and monomer concentration. A possible polymerization mechanism was proposed.  相似文献   

15.
环氧-聚砜结构胶粘剂耐环境性能的研究   总被引:4,自引:3,他引:4  
报导了SY-14环氧-聚砜胶粘剂体系的耐环境性能研究结果。在北京、南昌、广州和海口四个不同气候条件下的10年大气曝晒试验表明,各项胶接强度均末发生明显变化。含有抑制腐蚀底胶的胶接试板进行的10年室温盐水浸泡试验也取得了优良的试验结果。  相似文献   

16.
    
This study aimed to investigate the potential of photoreactive acrylate patches as systems for transdermal drug delivery, in particular, using more renewable alternatives and more environmentally friendly synthesis routes of transdermal patches. Therefore, the aim of this study was to develop a transdermal patch containing ibuprofen and investigate its performance in vitro through the pigskin. Transparent patches were prepared using four acrylate copolymers with an incorporated photoinitiator. Two types of transdermal patches based on the photocrosslinking acrylic prepolymers with isobornyl methacrylate as biocomponent and monomer increasing Tg (“hard”) were manufactured. The obtained patches were characterized for their adhesive properties and tested for permeability of the active substance. It turns out that patches whose adhesive matrix is photoreactive polyacrylate copolymers have a higher cohesion than patches from commercial adhesives, while the modification of the copolymers with isobornyl methacrylate resulted in an improvement in adhesion and tack. This study demonstrates the feasibility of developing photoreactive acrylic-based transdermal patches that contain biocomponents that can deliver a therapeutically relevant dose of ibuprofen.  相似文献   

17.
We have studied the fracture mechanism and oil absorption in an oil-accommodating adhesive. Shear and T-peel tests were carried out for test pieces prepared from two steel plates bonded with the adhesive, which is mainly composed of epoxy resin, modified NBR, and inorganic powders. When the modified NBR content was varied from 3 to 25 wt%, both the shear and the T-peel strengths increased with the modified NBR content and levelled off at around 10 wt% modified NBR content. This behavior was coincident with that in the tear test by the samples prepared from cured adhesive. Therefore, fracture in the shear and T-peel tests is attributed to the tearing of cured adhesive. The oil absorbed in the non-cured adhesive bleeds out during curing. However, this oil can be stored in the grooves of steel plates.  相似文献   

18.
    
Viscosity, loop tack, and peel strength of epoxidized natural rubber (ENR 25 grade)‐based pressure‐sensitive adhesive was studied in the presence of zinc oxide. The zinc oxide concentration was varied from 10–50 parts per hundred parts of rubber (phr). Coumarone–indene resin with loading from 20 to 100 phr was chosen as the tackifier resin. Toluene was used as the solvent throughout the experiment. The adhesive was coated on the substrate using a SHEEN hand coater to give a coating thickness of 60 μm. Viscosity of the adhesive was determined by a HAAKE Rotary Viscometer whereas the loop tack and peel strength were measured by a Llyod Adhesion Tester operating at 30 cm/min. Results show that viscosity and loop tack of adhesive increases with increasing zinc oxide concentration. For the peel strength, it increases with zinc oxide concentration up to 30–40 phr and drops after the maximum value. This observation is associated with the effect of varying degree of wettability of the adhesive on the substrate. However, for a fixed zinc oxide concentration, loop tack and peel strength exhibit maximum value at 80 phr resin loading after which both properties decrease with further addition of resin, an observation which is attributed to phase inversion. From this study, the optimum adhesion property is achieved by using 40 phr zinc oxide and 80 phr coumarone–indene resin. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

19.
    
The relationship between the miscibility of acrylic pressure-sensitive adhesive (PSA) and the fracture energy (W) (Jm−2) of the probe tack was investigated, wherein the master curve of W was compared with that of the maximum force (σmax) (gf) of the probe tack. It was ascertained that W of acrylic PSA was closely related to the miscibility between the components (acrylic copolymer and tackifier resin). In the case of the miscible blend system, the master curve of W shifted toward the lower rate side and, at the same time, the magnitude decreased as the tackifier resin content increased. The degree of the shift of W was extremely smaller than that of σmax. In the case of the immiscible blend system, the master curve of W remarkably decreased as the tackifier resin content increased, which suggests the fact that W of the PSA depended on the dynamic mechanical properties of the matrix phase and that the resin-rich phase acted as a kind of filler, thus reducing the practical performance. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 581–587, 1998  相似文献   

20.
The influence of tackifier structure on the temperature dependence of tack for a polystyrene block copolymer/tackifier system was investigated. A blend of polystyrene-block-polyisoprene-block- polystyrene triblock and polystyrene-block-polyisoprene diblock copolymers was used as the base polymer. Four different tackifiers were used: special rosin ester resin (RE), rosin phenolic resin (RP), hydrogenated cyclo-aliphatic resin (HC), and aliphatic petroleum resin (C5). Tack at 20?°C increased with the tackifier content for both RE and HC tackifier systems. Tack is affected by two factors: the work of adhesion at the adherend interface and the viscoelastic properties of the adhesive. The good balance of these two factors brought high tack. The adhesive with 10 wt.% tackifier exhibited the highest tack at 20?°C, whereas those with 30 and 50 wt.% tackifier were lower than those systems with 10 wt.% of the RP or C5 tackifiers. The adhesive with overly high hardness lowered the work of adhesion and the tack was not improved with more than 30 wt.%. A compatibility test in toluene solution and in solid state showed that tackifier RE has good compatibility with both polyisoprene and polystyrene, whereas tackifier RP has lower compatibility. Tackifiers HC and C5 had good compatibility with polyisoprene, but poor compatibility with polystyrene, and that of C5 was poorer. Pulse nuclear magnetic resonance (NMR) analyses indicated that tackifiers RE and HC effectively restrict the molecular mobility of polyisoprene phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号