首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
针对独立运行直流微电网,提出了含负荷功率自动分配的协调控制策略。孤岛运行状态下,直流微电网需独自承担系统电压稳定,为此采用多组小容量储能单元平衡分布式电源(DG)和负荷功率从而控制母线电压稳定。同时,为了避免储能系统过充和过放以及降低对通讯的依赖程度,根据各储能单元的荷电状态(SOC)和最大功率设计自适应下垂控制自动协调不同储能单元之间的负荷功率分配,可减小电压波动。当储能系统充电功率超过其最大允许功率或满充时,不同DG单元根据各自最大输出功率由最大功率跟踪控制(MPPT)切换为带有电压前馈补偿的下垂控制模式稳定母线电压和自动分配负荷功率,并考虑各单元的输出阻抗来提高分配精度。最后利用Matlab/Simulink对所设计的控制策略在不同运行模式下进行仿真验证,仿真结果表明所提出的控制策略可协调不同模式下独立直流微电网稳定运行和实现负荷功率自动分配。  相似文献   

2.
在含混合储能的直流微电网中,传统阻容下垂控制无法解决由线路电阻和负荷功率波动导致的系统功率分配失衡问题。为此,提出一种基于Takagi-Sugeno(T-S)模糊逻辑的自适应阻容下垂控制方法以实现混合储能的分频分配。根据蓄电池和超级电容的物理特性,建立单个蓄电池支路输出电压、蓄电池组间输出功率差额和阻性下垂系数之间的T-S模糊逻辑关系,以及单个超级电容支路输出功率及其变化率、超级电容组间功率差额和容性下垂系数之间的T-S模糊逻辑关系,并由此构建基于T-S模糊逻辑的阻容下垂控制器。推导含混合储能的直流微电网中各部分的平均阻抗模型,并采用阻抗比分析法对微电网的小信号稳定性进行研究。MATLAB/Simulink仿真结果表明,基于T-S模糊逻辑的阻容下垂控制可保证在线路电阻和负荷功率波动情况下系统功率的合理分配。  相似文献   

3.
含分布式电源的直流微电网惯性低,负荷功率波动容易诱发直流母线电压稳定性问题,需改进电源控制策略,增大系统惯性,提高电压质量.首先建立直流微电网简化模型,阐述系统惯性的定义和组成,分析恒功率负荷变化对稳定运行点和电量的影响.结合系统稳定运行分析以及等电量原则,提出了适用于直流微电网中风电机组改善电压惯性的控制策略.该策略...  相似文献   

4.
丁雨  于艾清 《电气传动》2021,51(15):39-44
考虑到通讯和电力电子技术的发展,针对以能量路由器作为与传统电网连接设备的联网型直流微电网,提出一种基于自适应下垂控制方法的直流母线电压控制策略.该策略根据直流母线电压波动范围切换不同单元对电压进行控制,同时采用自适应下垂控制协调本地储能单元,根据各自荷电状态和最大输出能力自动分配负荷功率.该控制策略无需通信,满足各单元即插即用的要求,在不同模式下均有单元参与母线电压控制,保证了直流系统的稳定性.在Matlab/Simulink仿真平台上搭建包含能量路由器的直流微电网系统,对控制方法进行仿真,结果验证了该分布式策略的有效性.  相似文献   

5.
针对独立运行的直流微电网,提出基于多组储能系统动态调节的协调控制策略。孤岛运行模式下,分布式电源采用最大功率点跟踪(MPPT)控制,并选择配置多组储能来维持母线电压稳定。通过设计带有电压前馈补偿的模糊下垂控制动态调整负荷功率分配,实现不同储能单元荷电状态(SOC)的快速均衡,保证多组储能单元之间的协调运行,并可减小母线电压波动。当储能系统因满充等原因退出运行后,分布式电源由MPPT控制切换为下垂控制,并根据自身的最大功率自动调整负荷功率分配,确保重要负荷正常供电和微电网的安全运行。同时,在分布式电源下垂控制器的功率环节增加前馈补偿控制,减小该模式下母线电压波动。利用MATLAB/Simulink搭建仿真模型,仿真结果表明所提的控制策略可有效减小电压波动并能实现独立直流微电网稳定运行。  相似文献   

6.
提出一种基于多组储能动态调节的直流微电网电压稳定控制策略。由于新能源具有波动性并为了提高储能系统的供电可靠性,选择配置一定控制系统的多组储能来控制母线电压稳定。为了避免储能单元过充和过放并降低对通讯的依赖程度,根据储能单元荷电状态(SOC)及最大功率、直流母线电压设计自适应下垂控制自动调节不同储能单元之间的负荷功率分配。此外,设计前馈补偿控制器对下垂控制功率环参考电压进行动态校正以控制母线电压稳定。同时,该控制策略依据直流母线电压自动切换不同变流器工作状态,确保各工况下均有变流器控制直流电压稳定及系统源荷功率平衡。最后,利用Matlab/Simulink搭建仿真模型,结果表明所提出的直流微电网电压稳定控制策略可控制直流微电网稳定运行,各储能单元之间负荷功率可自适应动态分配,并减小了母线电压波动。  相似文献   

7.
为了确保配网故障时直流微电网群的稳定运行,本文根据子微网的运行工况,将微网划分不同的运行模式,提出一种基于储能自适应下垂控制的协调控制策略来确保母线电压稳定。该策略通过微网中央控制器实时检测公共直流母线电压波动控制各子微网间并联或独立运行,从而来维持各子微网直流母线电压稳定。同时,采用自适应下垂控制协调并联运行的子微网中储能单元根据各自荷电状态和最大输出能力自动分配负荷功率。利用MATLAB/Simulink搭建直流微电网群仿真模型,仿真结果表明该策略可协调直流微电网群母线电压稳定并可自动分配不同储能单元之间的负荷功率。  相似文献   

8.
扰动发生后新能源发电和恒功率负荷侧换流器在现有功率控制模式下所表现出的负阻抗特性,会大幅增加直流电压振荡失稳的风险.为此,首先针对直流电压振荡失稳的问题,推导含恒功率负荷两端直流微电网的小扰动线性化状态方程.其次,结合各状态变量的参与因子,选取振荡电流、电压作为可调节控制参数,将其分别引入储能换流器与恒功率负荷换流器的占空比反馈环节中,提出基于状态反馈的多端直流电压振荡控制方法.然后,利用根轨迹、Bode图分析附加状态反馈电压振荡控制技术后的直流微电网稳定裕度的变化规律,为控制参数设计提供依据.最后,搭建时域仿真系统,验证了所提出的控制方法可有效抑制直流微电网的电压振荡,显著提高系统的动态稳定性.  相似文献   

9.
直流微电网中分布式微源或负荷改变、线路短路,均会引起直流母线电压波动,储能单元的快速响应对于提高直流微电网稳定性至关重要,据此该文针对直流微电网储能变换器,提出一种基于节点源荷差分电流的控制策略.通过计算直流微电网源荷功率差额,确定储能交互功率,并计算储能调节电流,进而调节储能变换器占空比.相较有限集模型预测控制,省去...  相似文献   

10.
针对含恒功率负荷的改进下垂控制直流微电网系统大扰动稳定问题,本文基于混合势函数理论,提出一种适用于改进下垂控制的直流微电网系统稳定性判据推导方法。通过推导得到稳定性判据,给出恒功率负荷稳定运行边界和储能变换器下垂系数及幂指数的取值上界。该判据能够良好地反映改进下垂控制的直流微电网系统大扰动稳定性与储能变换器下垂系数及幂指数取值间的关联,为系统控制参数的选取提供了重要参考。仿真验证了所提方法和稳定性判据的正确性。  相似文献   

11.
独立光储直流微电网分层协调控制   总被引:3,自引:0,他引:3       下载免费PDF全文
针对独立运行的光储直流微电网,提出分层协调控制策略。第一层控制光伏和储能系统等单元独立运行,且各单元变流器可依次对母线电压进行自动调节。采用自适应下垂控制协调多组储能来稳定母线电压并根据最大功率和荷电状态自动协调不同储能电池之间的负荷功率分配。当独立直流微电网中所需储能系统充电功率超过其最大允许功率时,光伏系统由最大功率跟踪控制切换为下垂模式控制母线电压稳定,且不同光伏单元可根据各自最大功率自动分配负荷功率,同时采用电压前馈补偿控制动态调整下垂控制器的参考电压将母线电压提升至额定值。为了提高运行效率并增强直流母线电压的稳定性,第二层控制根据母线电压协调不同变流器的工作方式,确保不同工作模式下均有变流器根据电压下垂特性控制直流电压来维持系统内的有功功率平衡。最后在Matlab/Simulink搭建仿真模块,分别验证在三种不同工作模式下所设计分层控制策略的有效性。仿真结果表明,该分层控制可实现独立直流微电网的稳定运行。  相似文献   

12.
由于直流微电网中常用的分层控制方法具有微电网母线电压波动较大、蓄电池控制模式切换的次数较多、微电网的冗余功率较大的缺点,为此提出了变功率控制方法。以光伏电池、蓄电池和负荷构成的孤岛式直流微电网为研究对象,设计以光伏输出和负荷消耗的功率差为基准,调节蓄电池充放电的方向、功率的大小以及微电网的工作模式。MATLAB/Simulink仿真结果验证了所提控制方法的有效性和可行性,且所提控制方法能够实现微电网功率的平衡和电压的稳定,其控制性能明显优于常用的分层控制方法。  相似文献   

13.
为保证微电网系统稳定运行、各发电单元之间功率平衡以及输出电能质量良好,采用混合储能装置作为含光伏发电微电网系统的储能部分。提出了含光伏发电单元的微电网系统并网运行时各储能单元和直流母线电压的控制策略。当光伏发电并网系统的能量管理采用功率分配型控制策略时,直流母线电压幅值的稳定受发电单元侧控制,通过控制微电源与三相逆变器输送给电网能量之间的平衡来保持直流母线电压稳定;当新能源或本地负载功率发生突变时,由于蓄电池和超级电容储能装置具有较好的能量互补特点,通过控制蓄电池吸收或释放低频功率,超级电容吸收或释放高频功率,可以抑制负载突变对直流母线造成的冲击。仿真和实验结果表明,上述控制策略能有效、快速地调节系统有功、无功功率输出,抑制微电网系统负荷突变引起的功率波动,改善系统输出电能质量,提高系统的可靠性和稳定性。  相似文献   

14.
基于下垂控制的直流微电网为自主集成分布式电源、储能单元和多类型负荷提供了一种有效的方式。在传统下垂控制作用下,由于直流微电网中各分布式电源出口线路参数不一致,且存在本地负荷,因而降低了负荷功率的分配精度,难以最大程度发挥分布式电源的效率,甚至引发分布式电源过载等问题,同时线路电阻上的电压降会进一步降低直流母线的电压质量。为了实现分散控制模式下孤立直流微电网的功率合理分配,并消除直流母线电压的偏差,提出基于自适应下垂特性的功率精确分配策略和直流母线电压无偏差控制策略,且在功率分配策略中考虑了本地负荷的影响。同时对DC-DC变换器在所提改进下垂控制下的响应特性进行分析,并讨论关键参数对系统稳定性的影响。仿真对比结果证明了所提控制策略的正确性和有效性。  相似文献   

15.
本文设计了一种应用于并网型直流微电网的主动协调控制方法。该方法将并网型直流微电网中的微源分为三类基本控制节点,设定了各类节点的控制目标。在运行模式切换时,各节点能够根据事先约定的控制规则和控制目标主动调整自身的控制模式,以维护直流微电网系统的运行特性。在PSCAD/EMTDC上,搭建了典型的直流微电网仿真模型,并对该控制方法进行仿真分析。结果表明,在分布式电源或负荷功率波动以及储能达到容量限定值等各种工作状态下,各微源换流器均可做出快速响应,保证了并网型直流微电网供电的可靠性和稳定性。  相似文献   

16.
受可再生能源出力波动、负荷变化、故障以及非计划性脱网等事件的影响,直流微电网将面临不同时间尺度的动态功率不平衡问题.直流微电网运行韧性体现了系统在高频/小干扰事件与低频/极端事件下的快速响应、减少性能损失并尽快恢复的能力.提出了一种基于有限控制集模型预测控制的混合储能系统的直流微电网运行韧性提升策略.为完善直流微电网韧性评价体系,首先提出了量化直流微电网运行韧性的方法.其次,建立混合储能系统离散预测模型,设计代价函数以及不同控制目标之间的权重系数,最大化功率型与能量型储能系统的优势,实现了基于局部信号的快速充放电与能量自动恢复控制.最后,通过多种干扰事件算例,验证所提出的韧性提升方法的可行性与有效性.  相似文献   

17.
朱晓荣  蔡杰 《现代电力》2016,33(2):13-21
下垂控制在直流微网中的应用越来越广泛。但是下垂特性以及直流母线电阻的存在,使得节点电压偏离额定值且影响系统的负荷分配。为充分发挥直流微电网中储能系统的作用,本文提出了多储能系统直流微电网的分布式控制策略。该控制策略在传统V-I下垂控制策略的基础上加入了平均电压控制环节和功率协调控制环节。两环节通过一致性算法仅仅需要交换相邻两节点的信息,构建一个稀疏的信息交流网络,就能补偿下垂控制造成的电压偏移,且负荷能够按照不同储能系统的荷电状态来分配。针对上述所提的控制策略,本文首先对含两储能系统的直流微电网进行了小干扰稳定性分析。然后在MATLAB/SIMULINK中搭建了含三储能系统的直流微电网模型,通过时域仿真验证了所提控制策略的有效性。  相似文献   

18.
针对孤岛直流微电网需要独自承担系统母线电压稳定和精确的功率分配,提出了含母线电压补偿和负荷功率动态分配的协调控制策略。在主控制层中采用下垂控制来实现分布式电源之间的功率共享;在下垂控制的基础上,提出了考虑电压调节控制和电流矫正控制的分布式二次控制,其对传统下垂控制带来的直流母线电压跌落进行补偿,使得母线电压恢复到额定值;通过对下垂系数的不断调整,达到了负荷功率分配的高精度。最后,利用MATLAB/Simulink对所设计的控制策略在不同运行模式下进行仿真验证,仿真结果表明所提的控制策略可以实现直流微电网的稳定运行和负荷功率的动态分配,且能够满足分布式电源即插即用等要求。  相似文献   

19.
针对独立直流微电网中功率分配问题,基于Hamilton能量理论提出分布式协同控制策略.首先对单组燃料电池独立直流微电网模型设计预反馈控制,得到端口受控耗散Hamilton模型;然后将单组燃料电池拓展为相互通信的多组燃料电池的独立直流微电网,设计分布式协同控制策略,使得用电负荷在每组系统中得到合理分配;最后通过仿真验证分布式协同控制的有效性.结果表明,燃料电池输出的有功功率一致且直流母线电压都稳定在其参考值.  相似文献   

20.
孤岛模式运行的微电网,其稳定性和可靠性要求各发电单元均衡分担负荷,电能质量要求系统电压和频率波动在一定范围内。采用传统下垂控制的微电网,电压和频率波动受负荷影响,电源输出特性与输电阻抗等因素有关,无法满足以上要求。本文分析了功率均衡分配条件,利用虚拟阻抗实现功率解耦和无功功率合理分配。针对虚拟阻抗以及下垂控制造成的母线电压降低,引入计算母线电压重新设计无功下垂方程,降低负荷变化和虚拟阻抗对母线电压的影响,保证其波动在规定范围内,提高了微网电能质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号