首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ability to use multiple tuned mass dampers (TMDs) in improving inelastic structural performance to dissipate the earthquake input energy is investigated. Inelastic structural behavior is modeled using the force analogy method, which is the backbone of analytically characterizing the plastic energy dissipation in the structure. Both tuning period and placement of the multiple TMDs are studied to give the best structural performance in terms of plastic energy dissipation. Numerical simulations are performed to study the energy responses of structures with and without TMD installed, and the effectiveness of TMDs in the reduction of energy responses is also studied by using tuned mass spectra. Results show that the installation of TMDs gives the structure additional capability of dissipating a large amount of damping energy and at the same time reducing the amount of plastic energy demand and therefore reducing damage in the structure. More important, TMDs have the ability to draw the plastic energy dissipation at the lower stories and release it to the upper stories. This is particularly beneficial for structures that would otherwise suffer more damage at the lower stories than the upper stories. However, the reduction in plastic energy dissipation is quite sensitive to the earthquake vibration characteristics, and TMDs should not be used for structures with weak upper stories.  相似文献   

2.
A computational method is derived to characterize the energy in inelastic structures and the transfer among various energy forms over the duration of an earthquake. This computational method is based on the force analogy method, which uses a change in displacement field to represent the inelastic behavior of structure instead of the traditional method of changing stiffness. The evaluation of plastic energy due to inelastic deformation in the structure becomes very simple using the force analogy method, where the accumulation of plastic energy due to plastic rotations is exactly equal to the elastic moment multiplied by the change in plastic rotations. In addition, this plastic energy formula can be used for any material with predefined stress–strain relationship, and therefore the transfer of energy among various forms can be calculated at any specific time. Once the energy equation is derived, numerical analyses are performed on a single degree of freedom system to study the characteristics of energy transfer. This is then extended to study the transfer of energy among various forms in a multidegree of freedom system. These two studies show that the analytically derived equation for plastic energy is accurate in studying the structural energy response due to earthquake excitations.  相似文献   

3.
The aim of this study is to survey and evaluate permanent housing structures built after the Marmara earthquakes based on the principles of earthquake resistant design of reinforced concrete structures. The seismicity of Turkey requires immediate attention as there is a high probability of another major earthquake event in the next 30?years in Istanbul. The classification of structural systems, the damage patterns and behaviors of structural systems, and structural and nonstructural components under lateral earthquake loads, are analyzed. Based on this analysis, reliable structures can be built without overextending the Turkish economy, and loss of life and structural damage can be reduced by designing structures with greater earthquake energy dissipation capacity. The selection of project areas and the strength of the structural system are thoroughly analyzed taking postearthquake public psychology into account. Structural characteristics of permanent housing built subsequent to the Marmara earthquakes are critiqued and documented with a case study.  相似文献   

4.
The isolation bearings are widely used in earthquake prone areas to protect the structure from seismic forces. The isolation bearing consists of an isolator to increase the natural period of the structure away from the high-energy periods of the earthquake, and a damper to absorb energy in order to reduce the seismic force. The most common isolation bearings used are lead–rubber bearings. They combine the function of isolation and energy dissipation in a single compact unit, giving structural support, horizontal flexibility, damping, and a centering force in a single unit. The relation between the horizontal force and horizontal displacement of the isolation bearings is nonlinear; to calculate the stiffness and the damping constant, which correspond to effective design displacement, the nonlinear behavior is expressed by bilinear behavior. This technical note presents new relations to calculate yield force, horizontal displacement, and damping.  相似文献   

5.
In this paper four different methods are investigated for estimating the equivalent modal damping ratios of a short-span bridge under strong ground motion by considering the energy dissipation at the boundary. The Painter Street Overcrossing (PSO) is investigated because of seismic data availability. Computed responses using the response-spectrum method with the equivalent damping ratios estimates are compared with the recorded responses. The results show that the four methods provide reasonable estimation of equivalent modal damping ratios and that neglecting off-diagonal elements in the damping matrix is the most efficient and practical method. The equivalent damping ratio of the PSO was nearly 25% under an earthquake with peak ground acceleration of 0.55g, which is much higher than the conventional assumption of 5%.  相似文献   

6.
Lightly reinforced and unreinforced masonry buildings have not performed well in earthquakes. Evaluation of past performance of masonry structures has led to more stringent design and construction requirements in the current building codes, and has raised concerns about the performance of existing lightly reinforced and unreinforced masonry buildings in future earthquakes. Base isolation has been shown to be effective in reducing damage to large building structures, and appears to be particularly effective in protecting stiff masonry structures. Using the base isolation principle, Kansas State University’s stiffness decoupler for the base isolation of structures (SDBIS) was designed to effectively reduce the acceleration and force transferred into a building superstructure during a seismic event. The sliding system uses a passive method to provide damping and to dissipate some of the kinetic energy to reduce relative displacements. In addition, the SDBIS system includes a self-centering element that will recover the majority of the induced displacement and provide resistance to overturning. In order to apply the SDBIS system to the masonry building industry, dynamic testes were performed to evaluate the structural response of a full-size one-story masonry model that was supported by the SDBIS system. Acceleration time-history results are presented for dynamic tests using the July 21, 1952 Kern County earthquake, Station 1095 Taft Lincoln School record, the May 19, 1940 Imperial Valley earthquake, Station 117 El Centro Array #9 record, the February 9, 1971 San Fernando earthquake, Station 279 Pacoima Dam record, and the January 17, 1994 Northridge earthquake, Station 24436 Tarzana Cedar Hill record ground motions. Test results show the system is effective when used with a masonry structure.  相似文献   

7.
低屈服点钢在建筑抗震设计中的应用   总被引:5,自引:0,他引:5  
随着钢结构建筑抗震设计水平的进步,消能抗震设计已成为建筑抗震的一个发展方向.低屈服点、极低屈服点钢具有良好的塑韧性和低达100 MPa的屈服强度,并具有较狭窄的强度波动范围,而且成本低、易维护更换,在抗震阻尼构件的制造应用中具有显著的优势,从而成为建筑抗震材料中越来越受到重视的新钢种.介绍了抗震用低屈服点钢的性能要求及其作为抗震用钢的优点,同时还介绍了低屈服点钢的发展历史、现状及市场前景.  相似文献   

8.
The writers recently proposed a new type of mass damper system to integrate structural and environmental control systems for buildings. External shading fins are used as mass dampers such that they can (1) control building energy consumption by adjusting the fins and, thus, the amount of sunlight entering the building; and (2) control structural movements by dissipating energy with the dampers during strong motions. Because shading fins are placed along the height of the building, the mass dampers are distributed along the building height instead of concentrated in one or a few locations like traditional tuned mass dampers (TMDs). The distributed mass damper (DMD) system is formulated and simulated for earthquake motions. Optimization is performed on damper parameters (i.e., masses, stiffness, and damping coefficients) of the passive DMD system to minimize structural responses. A near-optimal DMD system outperforms a single TMD system. The movable shading fins are also briefly discussed; they show a substantial savings in building energy consumption.  相似文献   

9.
为了研究墙板与钢框架结构之间的协同抗震性能,对采用不同墙框连接节点的轻质混凝土拼装墙板填充钢框架进行了低周往复荷载试验。通过对比试件的承载力、滞回性能、刚度、耗能以及延性性能,探讨了轻质混凝土拼装墙板及其整体性对结构抗震性能的影响。结果表明:填充墙板钢框架结构的最终破坏形态以墙板挤压开裂,框架梁柱端部翼缘屈曲为主;轻质混凝土拼装墙板与钢框架协同工作,有利于提高结构整体的承载力和变形能力,减轻钢框架在平面内的屈曲破坏;与刚性节点相比,采用柔性节点连接墙板与钢框架对结构的承载力、层间刚度和耗能能力更为有利;增强拼装墙板的整体性,有助于提高结构整体刚度、变形和耗能能力。研究结果可为轻质混凝土拼装墙板填充钢框架结构的抗震设计提供参考。   相似文献   

10.
A computational analysis method is presented to investigate the potential energy of fully nonlinear framed structures and other energy characteristics due to earthquake ground motions. The overall potential energy is directly related to the stiffness of the structure, and it consists of three components in a fully nonlinear system: (1) strain energy representing the storing energy that is associated with the linear elastic portion of the structural response; (2) higher-order energy representing the energy associated with the geometric nonlinear effect of the overall structural response, which is derived from finite element method; and (3) plastic energy representing the energy dissipated by material inelasticity of the structure, and it is being derived analytically. The merit of proposed analysis method lies in the uncoupling of geometric nonlinearity and material inelasticity effects before solving for the equation of motion, and this leads directly to the analytical representations of each energy form. Both plastic energy and higher-order energy based on single-degree-of-freedom system are studied in detail to demonstrate the beauty of the proposed analysis method. In addition, a method of generating energy density spectra is also proposed, which is useful to enhance the understanding energy characteristics in seismic analysis. Finally, a five-story frame is used as a numerical example to illustrate the effectiveness and robustness of the proposed method.  相似文献   

11.
Nonlinear pushover analysis is a powerful tool for evaluating the inelastic seismic behavior of structures. The paper deals with the nonlinear analysis process followed during the independent design check of the Greveniotikos Bridge in Greece. The nonlinear response of the bridge was investigated from the first pier hinging to the inelastic equilibrium condition during the design-level earthquake and then up to the ultimate limit state. The effects on the seismic demand of period lengthening and damping increase produced by structural deterioration were evaluated. Onset and progression of plastic hinges were determined along with the pier stiffness distribution and the force reduction factors to be used in spectral analysis. The nonlinear loading conditions of plastic hinges were analyzed to assess their rotation capacity and shear strength. Finally, the safety factor from progressive collapse condition was evaluated. The parametric approach followed in this work permitted evaluation of the effects of several parameters on the inelastic structure response, thus enhancing confidence with result evaluation.  相似文献   

12.
One of the most successful means of protecting structures against severe seismic events is base isolation. However, optimal design of base isolation systems depends on the magnitude of the design level earthquake that is considered. The features of an isolation system designed for an El Centro-type earthquake typically will not be optimal for a Northridge-type earthquake and vice versa. To be effective during a wide range of seismic events, an isolation system must be adaptable. To demonstrate the efficacy of recently proposed “smart” base isolation paradigms, this paper presents the results of an experimental study of a particular adaptable, or smart, base isolation system that employs magnetorheological (MR) dampers. The experimental structure, constructed and tested at the Structural Dynamics and Control/Earthquake Engineering Laboratory at the Univ. of Notre Dame, is a base-isolated two-degree-of-freedom building model subjected to simulated ground motion. A sponge-type MR damper is installed between the base and the ground to provide controllable damping for the system. The effectiveness of the proposed smart base isolation system is demonstrated for both far-field and near-field earthquake excitations.  相似文献   

13.
A predictive optimal linear control (POLC) algorithm is proposed for controlling the seismic responses of elastic structures. This algorithm compensates for time delay that occurs in real control application by predicting the structural response in the classical optimal linear control equation. The unique feature of this proposed POLC algorithm is that it compensates for time delay very effectively over a very wide range of time delay magnitudes. Numerical examples of single-degree-of-freedom structures are presented to study the performance of the proposed POLC system for various time delay magnitudes. Results show that a time delay always causes degradation of control efficiency, and POLC can greatly reduce this degradation. The effects of natural periods and damping of the structure, different earthquake characteristics and numerical integration schemes, and choices of control gains on the degradation induced by time delay are carefully studied in the analysis. Results show that using a larger time delay magnitude may give smaller structural responses, and this magnitude is independent of earthquake characteristics but dependent on the control gains. Finally, practical application of POLC is performed on a six-story moment-resisting steel frame. It is demonstrated that POLC maintains stability in multi-degree-of-freedom structures and at the same time it has a satisfactory control performance.  相似文献   

14.
A regenerative force actuation (RFA) network consists of multiple electromechanical forcing devices distributed throughout a structural system and actuated in such a way as to reduce the response of the structure when it is subjected to an excitation. The associated electronics of the devices are connected together such that they are capable of sharing electrical power with each other. This makes it possible for some devices to extract mechanical energy from the structure while others reinject a portion of that energy back into the structure at other locations. The forcing capability of an RFA network is constrained by the requirement that the total network must always dissipate energy. As such, it differs from fully active control devices in that its operation requires only a small amount of external power. Furthermore, its power-sharing capability gives it a forcing versatility beyond that attainable with semiactive and traditional passive damping systems. In this paper, RFA networks are analyzed in the context of their ability to apply supplemental linear structural damping, taking into account dissipation due to electrical resistances and viscous damping associated with the actuators. It is shown that these systems can be used to produce nonlocal damping (i.e., damping forces between distant degrees of freedom) and asymmetric damping matrices. By comparison, semiactive and passive devices can only impose local damping forces. The more generalized linear damping capabilities of RFA networks are shown to yield significant improvements in linear-quadratic optimal performance in stationary response. Examples are given in which a RFA network is used in various configurations to reduce the stationary response of the three-story shear structure to stochastic base excitation.  相似文献   

15.
A precast segmental concrete bridge pier system is being investigated for use in seismic regions. The proposed system uses unbonded posttensioning (UBPT) to join the precast segments and has the option of using a ductile fiber-reinforced cement-based composite (DRFCC) in the precast segments at potential plastic hinging regions. The UBPT is expected to cause minimal residual displacements and a low amount of hysteretic energy dissipation. The DFRCC material is expected to add hysteretic energy dissipation and damage tolerance to the system. Small-scale experiments on cantilever columns using the proposed system were conducted. The two main variables were the material used in the plastic hinging region segment and the depth at which that segment was embedded in the column foundation. It was found that using DFRCC allowed the system to dissipate more hysteretic energy than traditional concrete up to drift levels of 3–6%. Furthermore, DFRCC maintained its integrity better than reinforced concrete under high cyclic tensile-compressive loads. The embedment depth of the bottom segment affected the extent of microcracking and hysteretic energy dissipation in the DFRCC. This research suggests that the proposed system may be promising for damage-tolerant structures in seismic regions.  相似文献   

16.
Long cantilevered balconies used as seating areas in auditoriums, theaters, churches, and stadiums are often susceptible to excessive vibrations because of crowd movements. Measurement and analysis of the responses of such structures when subjected to human movements can provide a reasonable estimate of their dynamic properties. However, it is generally very difficult to artificially excite such massive structures with a measured input force at the same level as that exerted by a crowd. In addition, it is not yet well understood how human occupants’ presence may change the dynamic properties of these structures. This paper presents details of a remote vibration monitoring system (RVMS) installed on a large cantilevered balcony structure to collect the vibration records generated by rhythmic crowd activities. The results of the studies conducted indicate that the presence of human occupants resulted in a consistent reduction in the natural frequencies of the structure and an increase in the damping ratios for higher modes. Conclusions were also drawn regarding the applicability of the damping ratios recommended by a number of standards and design guides for the structure used in this study.  相似文献   

17.
Vertical array data recorded during the 1995 Kobe earthquake are used to calculate the upward and downward energy flow based on one-dimensional SH-wave multireflection theory, from which the energy dissipation in a surface layer is evaluated as their residual. The dissipated energy thus evaluated in a liquefied site is found to reach about 70% of the upward input energy, which indicates that soil nonlinearity and liquefaction serve as effective energy absorbers. In contrast, more energy returns to deeper ground in sites without strong nonlinear behavior. Furthermore, the dissipated energy in the surface layer tends to increase nonlinearly in a convex shape with increasing equivalent damping ratio of the soil there. A simplified two-layer system indicates that the energy dissipation is influenced not only by the soil damping in the surface layer but also by the impedance ratio between the base and surface layers and the input frequency. The same convex relationship is also obtained in the two-layer system, indicating that the simplified system may reflect some important aspects of the energy dissipation mechanisms in the ground.  相似文献   

18.
The effectiveness of structural fuse mechanisms used to improve the performance of buildings during seismic loading depends on their capacity, ductility, energy dissipation, isolation, and self-centering characteristics. Although rocking shallow footings could also be designed to possess many of these desirable characteristics, current civil engineering practice often avoids nonlinear behavior of soil in design, due to the lack of confidence and knowledge about cyclic rocking. Several centrifuge experiments were conducted to study the rocking behavior of shallow footings, supported by sand and clay soil stratums, during slow lateral cyclic loading and dynamic shaking. The ratio of the footing area to the footing contact area required to support the applied vertical loads (A/Ac), related to the factor of safety with respect to vertical loading, is correlated with moment capacity, energy dissipation, and permanent settlement measured in centrifuge and 1 g model tests. Results show that a footing with large A/Ac ratio (about 10) possesses a moment capacity that is insensitive to soil properties, does not suffer large permanent settlements, has a self-centering characteristic associated with uplift and gap closure, and dissipates seismic energy that corresponds to about 20% damping ratio. Thus, there is promise to use rocking footings in place of, or in combination with, structural base isolation and energy dissipation devices to improve the performance of the structure during seismic loading.  相似文献   

19.
Investigated are the steady-forced and earthquake responses of single-degree-of-freedom (SDF) systems with a nonlinear viscoelastic damper (VED), which consists of a nonlinear fluid viscous damper (FVD) connected in series to a linear elastic bracing element (chevron or inverted V-shaped braces). For a wide range of bracing stiffness, nonlinear dampers are advantageous because they achieve essentially the same reduction in system responses but with a significantly reduced force. Damper nonlinearity has little influence on the structural response in the velocity-sensitive region of the spectrum even if the bracing is fairly flexible, but differences up to 16% were observed in other spectral regions. As expected, supplemental damping reduces structural response and the response reduction depends on the bracing stiffness, with this dependence varying with the spectral regions. For practical applications, a procedure is presented to estimate the design values of structural deformation, structural force, foundation shear, and damper force directly from the earthquake design (or response) spectrum. Finally, a procedure is presented to determine the damper and bracing properties necessary to limit the structural deformation to some design value or to the structural capacity.  相似文献   

20.
A new highway system is being constructed in Chile including many bridges. Due to the high seismic risk in the country, high damping rubber bearings, friction bearings, and passive energy dissipation devices have been considered in the design of the majority of the new moderate and large span bridges. Their design follows American Association of State Highway guidelines and technical specifications from the Chilean Ministry of Public Works. Experimental and analytical studies have been performed in three of these structures: (1) a 383 m long continuous beam bridge supported on high damping rubber bearings; (2) a 268 m long continuous beam bridge supported on friction bearing with additional viscous dampers; and (3) a five-span simply supported beam bridge resting on neoprene bearings. Predominant periods and damping characteristics for small amplitude vibrations have been determined from output-only nonparametric analyses. Comparison with standard analytical structural models indicates that the models normally used for analysis yield comparable predominant periods and mode shapes but the damping values typically recommended are larger than the ones observed from ambient vibrations, even when additional energy dissipation elements are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号