首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The output tracking controller design problem is dealt with for a class of nonlinear strict-feedback form systems in the presence of nonlinear uncertainties, external disturbance, unmodelled dynamics and unknown time-varying virtual control coefficients. A new method based on signal compensation is proposed to design a linear time-invariant robust controller, which consists of a nominal controller and a robust compensator. It is shown that the closed-loop control system with a controller designed by the proposed method has robust asymptotical practical tracking property for any bounded initial conditions and robust tracking transient property if all initial states are zero.  相似文献   

2.
This paper considers robust stochastic stability and PI tracking control problem for Markov jump systems with both input delay and an unknown nonlinear function. Based on the traditional PI control strategy, a new controller design scheme is proposed for nonlinear time-delay Markov jump systems which can realize multiple control objectives including robust stochastic stability and tracking performance. By using the Lyapunov stability theory and LMI algorithms, a sufficient condition for the solution to robust stochastic stability and tracking control problem is obtained. Then, the desired controller with PI structure is designed, which ensures the resulting closed-loop system is robust stochastically stable and the system state has favorable tracking performance. Finally, a numerical example is provided to illustrate the effectiveness of the proposed results.  相似文献   

3.
A new robust state‐feedback controller is designed to solve the tracking problem of a class of nonlinear uncertain systems. The contributions of our paper are threefold: Firstly, a new robust state‐feedback controller with a simple structure is derived. Owing to its simplicity, less computation is needed. What is more, for polynomial‐type uncertainties, a much simpler controller can be derived directly without the need of computing partial derivatives. Secondly, a technique that leaves positive functions used in the nonlinear damping terms to be chosen freely is introduced which may enable us to find out a good one among all candidate positive functions to reduce the control effort and to design a ‘softer’ controller. Thirdly, the assumption made in non‐adaptive robust control schemes where the bounding functions are required to be exactly known is relaxed, and the assumption on the reference signal is relaxed too. When our robust controller is applied, the simulations show that better performance can be achieved with less control effort. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, the problem of output tracking for single-input/single-output nonlinear systems in the presence of mismatched uncertainty is studied. In our problem, the so-called matching condition in the literature is further relaxed, and a more general condition on the uncertainty is given. To attenuate the effects of uncertainties on the tracking error, a design method which is referred to as the Stable Combined Variable Perturbation Method (SCVPM) is presented. Based on this design method, a new robust tracking controller is derived using hyb rid control strategy. This controller, taken as a root-controller, is then used to generate two other controllers. All these controllers guarantee robustness of the closed-loop system, only with different tracking accuracies. The design method as well as the robust controllers is characterized by a small robust design parameter, ϵ. The tracking error converges to an ϵ-neighbourhood of the origin, and, by letting ϵ go to zero, the accuracy of tracking can be improved to any desired degree. Finally, an example is given and the simulation results confirm the theoretical analyses, thus show the effectiveness of the new design method and controllers.  相似文献   

5.
The problem of optimal robust tracking in two-parameter adaptive control systems under non-linear time-varying unmodelled dynamics is examined. A new robust stability criterion is derived for analysing the robustness of adaptive control systems with non-linear time-varying model errors. Based on the concept of excess robustness and the theory of the minimum Hnorm, a simple and feasible design algorithm is presented to synthesize a two-parameter adaptive controller which ensures that adaptive control systems can achieve the object of optimal robust tracking in the presence of non-linear time-varying unmodelled dynamics. Simulation results that demonstrate features of the two-parameter adaptive controller with optimal robust tracking in the light of the design algorithm are included.  相似文献   

6.
参数不确定机器人分散鲁棒跟踪控制   总被引:3,自引:1,他引:3  
提出了一种新的参数不确定机器人分散控制器设计方法.首先将关节子系统的动力学模型分解为人工标称模型和非线性时变不确定模型两部分;然后分别设计相应的标称控制器和鲁棒补偿器.标称控制器使得标称闭环系统具有理想的跟踪性能;鲁棒补偿器可以抑制参数不确定和关节间非线性耦合等因素的影响,实现鲁棒跟踪.所设计的控制器只需要局部关节的位置反馈,具有易于实现和可在线调整的优点.仿真结果说明了该方法的有效性.  相似文献   

7.
A systematic approach to design a nonlinear controller using minimax linear quadratic Gaussian regulator (LQG) control is proposed for a class of multi‐input multi‐output nonlinear uncertain systems. In this approach, a robust feedback linearization method and a notion of uncertain diffeomorphism are used to obtain an uncertain linearized model for the corresponding uncertain nonlinear system. A robust minimax LQG controller is then proposed for reference command tracking and stabilization of the nonlinear system in the presence of uncertain parameters. The uncertainties are assumed to satisfy a certain integral quadratic constraint condition. In this method, conventional feedback linearization is used to cancel nominal nonlinear terms and the uncertain nonlinear terms are linearized in a robust way. To demonstrate the effectiveness of the proposed approach, a minimax LQG‐based robust controller is designed for a nonlinear uncertain model of an air‐breathing hypersonic flight vehicle (AHFV) with flexibility and input coupling. Here, the problem of constructing a guaranteed cost controller which minimizes a guaranteed cost bound has been considered and the tracking of velocity and altitude is achieved under inertial and aerodynamic uncertainties.  相似文献   

8.
In this paper, the robust adaptive fuzzy tracking control problem is discussed for a class of perturbed strict-feedback nonlinear systems. The fuzzy logic systems in Mamdani type are used to approximate unknown nonlinear functions. A design scheme of the robust adaptive fuzzy controller is proposed by use of the backstepping technique. The proposed controller guarantees semi-global uniform ultimate boundedness of all the signals in the derived closed-loop system and achieves the good tracking performance. The possible controller singularity problem which may occur in some existing adaptive control schemes with feedback linearization techniques can be avoided. In addition, the number of the on-line adaptive parameters is not more than the order of the designed system. Finally, two simulation examples are used to demonstrate the effectiveness of the proposed control scheme.  相似文献   

9.
电液伺服系统的多滑模鲁棒自适应控制   总被引:7,自引:0,他引:7  
针对一类参数与外负载非匹配不确定的非线性高阶系统,提出了一种基于逐步递推方法的多滑模鲁棒自适应控制策略.应用逐步递推的多滑模控制方法简化了高阶系统的控制问题,同时在自适应控制中加入鲁棒控制的方法,以消除不确定性对控制性能的影响.首先利用逐步递推方法与状态反馈精确线性化理论,得出确定系统的多滑模控制器设计方法;然后基于Lyapunov稳定性分析方法,给出不确定系统的参数自适应律,及鲁棒自适应控制器的设计方法.本文把该控制策略应用到电液伺服系统的位置跟踪控制中,仿真结果显示,该控制方法具有较强的鲁棒性及良好的跟踪效果.  相似文献   

10.
In this paper, the H input/output (I/O) linearization formulation is applied to design an inner‐loop nonlinear controller for a nonlinear ship course‐keeping control problem. Due to the ship motion dynamics are non‐minimum phase, it is impossible to use the ordinary feedback I/O linearization to resolve. Hence, the technique of H I/O linearization is proposed to obtain a nonlinear H controller such that the compensated nonlinear system approximates the linear reference model in I/O behaviour. Then a μ‐synthesis method is employed to design an outer‐loop robust controller to address tracking, regulation, and robustness issues. The time responses of the tracking signals for the closed‐loop system reveal that the overall robust nonlinear controller is able to provide robust stability and robust performance for the plant uncertainties and state measurement errors. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, the robust adaptive fuzzy tracking control problem is discussed for a class of perturbed strict-feedback nonlinear systems. The fuzzy logic systems in Mamdani type are used to approximate unknown nonlinear functions. A design scheme of the robust adaptive fuzzy controller is proposed by use of the backstepping technique. The proposed controller guarantees semi-global uniform ultimate boundedness of all the signals in the derived closed-loop system and achieves the good tracking performance. The possible controller singularity problem which may occur in some existing adaptive control schemes with feedback linearization techniques can be avoided. In addition, the number of the on-line adaptive parameters is not more than the order of the designed system. Finally, two simulation examples are used to demonstrate the effectiveness of the proposed control scheme.  相似文献   

12.
This paper addresses the problem of designing adaptive fuzzy-based (or neural network-based) robust controls for a large class of uncertain nonlinear time-varying systems. This class of systems can be perturbed by plant uncertainties, unmodeled perturbations, and external disturbances. Nonlinear H(infinity) control technique incorporated with adaptive control technique and VSC technique is employed to construct the intelligent robust stabilization controller such that an H(infinity) control is achieved. The problem of the robust tracking control design for uncertain robotic systems is employed to demonstrate the effectiveness of the developed robust stabilization control scheme. Therefore, an intelligent robust tracking controller for uncertain robotic systems in the presence of high-degree uncertainties can easily be implemented. Its solution requires only to solve a linear algebraic matrix inequality and a satisfactorily transient and asymptotical tracking performance is guaranteed. A simulation example is made to confirm the performance of the developed control algorithms.  相似文献   

13.
李小华  包海强  刘辉 《控制与决策》2024,39(7):2215-2223
研究一类具有外部扰动的非线性系统在初始跟踪条件未知情况下的预设性能有限时间有界$H_\infty$控制问题.针对预设性能控制设计,提出一个新的误差转换思想,并据此设计新的预设性能函数,解决预设性能控制依赖于系统被约束量初始条件的问题.基于所提出预设性能函数、有限时间控制理论以及有界$H_\infty$的设计方法,获得系统无需初始跟踪条件的预设性能有限时间有界$H_\infty$控制器,同时解决非线性系统在有界稳定情况下难以设计$H_\infty$控制器的问题,保证跟踪误差以预先设定的动态性能在有限时间内收敛至平衡点附近的小邻域内,并对外部干扰有较强的鲁棒性能.  相似文献   

14.
This paper addresses issues related to nonlinear robust output feedback controller design for a nonlinear model of airbreathing hypersonic vehicle. The control objective is to realize robust tracking of velocity and altitude in the presence of immeasurable states, uncertainties and varying flight conditions. A novel reduced order fuzzy observer is proposed to estimate the immeasurable states. Based on the information of observer and the measured states, a new robust output feedback controller combining dynamic surface theory and fuzzy logic system is proposed for airbreathing hypersonic vehicle. The closedloop system is proved to be semi-globally uniformly ultimately bounded (SUUB), and the tracking error can be made small enough by choosing proper gains of the controller, filter and observer. Simulation results from the full nonlinear vehicle model illustrate the effectiveness and good performance of the proposed control scheme.   相似文献   

15.
A new control design method based on signal compensation is proposed for a class of uncertain multi‐input multi‐output (MIMO) nonlinear systems in block‐triangular form with nonlinear uncertainties, unknown virtual control coefficients, strongly coupled interconnections, time‐varying delays, and external disturbances. By this method, the controller design is performed in a backstepping manner. At each step of backstepping procedure, a nominal virtual controller is first designed to get desired output tracking for the nominal disturbance‐free subsystem, and then a robust virtual compensator is designed to restrain the effect of the uncertainties, delays involved in the subsystem, and the couplings among the subsystems. The designed controller is linear and time‐invariant, so the explosion of complexity in the control law is avoid. It is proved that robust stability and robust practical tracking property of the closed‐loop system can be ensured, and the tracking errors can be made as small as desired. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
This paper addresses the problem of tracking control for a class of uncertain nonstrict‐feedback nonlinear systems subject to multiple state time‐varying delays and unmodeled dynamics. To overcome the design difficulty in system dynamical uncertainties, radial basis function neural networks are employed to approximate the black‐box functions. Novel continuous functions that deal with whole states uncertainties are introduced in each step of the adaptive backstepping to make the controller design feasible. The robust problem caused by unmodeled dynamics when constructing a stable controller is solved by employing an auxiliary signal to regulate its boundedness. A novel Lyapunov‐Krasovskii functional is developed to compensate for the delayed nonlinearity without requiring the priori knowledge of its upper bound functions. On the basis of the proposed robust adaptive neural controller, all the closed‐loop signals are semiglobal uniformly ultimately bounded with good tracking performance.  相似文献   

17.
研究一类不确定非线性系统的鲁棒输出跟踪控制问题。应用输入/输出反馈线性化法和李亚普诺夫方法,提出一种基于不确定项上界的连续型鲁棒输出跟踪控制器设计方法。该控制器不仅可确保闭环系统的状态一致最终有界,使系统输出按指数规律跟踪期望输出,而且计算简单,更易实现。仿真结果证明了该方法的可行性与有效性。  相似文献   

18.
We study in this paper the problem of iterative feedback gains auto‐tuning for a class of nonlinear systems. For the class of input–output linearizable nonlinear systems with bounded additive uncertainties, we first design a nominal input–output linearization‐based robust controller that ensures global uniform boundedness of the output tracking error dynamics. Then, we complement the robust controller with a model‐free multi‐parametric extremum seeking control to iteratively auto‐tune the feedback gains. We analyze the stability of the whole controller, that is, the robust nonlinear controller combined with the multi‐parametric extremum seeking model‐free learning algorithm. We use numerical tests to demonstrate the performance of this method on a mechatronics example. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
A new robust nonlinear controller is presented and applied to a planar 2-DOF parallel manipulator with redundant actuation. The robust nonlinear controller is designed by combining the nonlinear PD (NPD) control with the robust dynamics compensation. The NPD control is used to eliminate the trajectory disturbances, unmodeled dynamics and nonlinear friction, and the robust control is used to restrain the model uncertainties of the parallel manipulator. The proposed controller is proven to guarantee the uniform ultimate boundedness of the closed-loop system by the Lyapunov theory. The trajectory tracking experiment with the robust nonlinear controller is implemented on an actual planar 2-DOF parallel manipulator with redundant actuation. The experimental results are compared with the augmented PD (APD) controller, and the proposed controller shows much better trajectory tracking accuracy.  相似文献   

20.
This paper proposes a new asymptotic attitude tracking controller for an underactuated 3-degree-of-freedom (DOF) laboratory helicopter system by using a nonlinear robust feedback and a neural network (NN) feedforward term. The nonlinear robust control law is developed through a modified inner-outer loop approach. The application of the NN-based feedforward is to compensate for the system uncertainties. The proposed control design strategy requires very limited knowledge of the system dynamic model, and achieves good robustness with respect to system parametric uncertainties. A Lyapunov-based stability analysis shows that the proposed algorithms can ensure asymptotic tracking of the helicopter’s elevation and travel motion, while keeping the stability of the closed-loop system. Real-time experiment results demonstrate that the controller has achieved good tracking performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号